1. Otto, M. and K. E. V. Muhlendahl, "International Journal of Hygiene and Environmental Health,", Vol. 210, 635-644, 2007.
doi:10.1002/bem.20389 Google Scholar
2. Radzievsky, A. A., O. V. Gordiienko, S. Alekseev, I. Szabo, A. Cowan, and M. C. Ziskin, "Electromagnetic millimiter wave induced hypoalgesia: Frequency dependence and involvement of endogenus opioids," Bioelectromagnetics, Vol. 29, 284-295, 2008.
doi:10.1002/bem.20226 Google Scholar
3. Wang, J., S. Koyama, Y. Komatsubar, Y. Suzuki, M. Taki, and J. Miyakoshi, "Effects of a 2450MHz high-frequency electromagnetic field with a wide range of SARs on the induction of heat-shock proteins in A172 cells ," Bioelectromagnetics, Vol. 27, 479-486, 2006.
doi:10.1080/09553000110115649 Google Scholar
4. Tian, F., T. Nakahara, K. Wake, M. Taki, and J. Miyakoshi, "Exposure to 2.45 GHz electromagnetic fields induces HSP70 at a high SAR of more than 20 W/kg but not at 5 W/kg but not at 5 W/kg in human glioma MO54 cells," International Journal of Radiation Biology, Vol. 78, No. 5, 433-440, 2002.
doi:10.1080/15368370600581939 Google Scholar
5. Paulraj, R. and J. Behari, "Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation," Electromagnetic Biology Medicine, Vol. 25, No. 1, 61-70, 2006.
doi:10.1016/j.febslet.2005.07.063 Google Scholar
6. Lee, S., D. Jhonson, K. Dubbar, H. Dong, X. J. Ge, Y. C. Kim, C. Wing, N. Yayathilaka, N. Emmanuel, C. Q. Zhou, H. L. Gerber, and C. C. Tsen, "2.45 GHz radiofrequency fields alter gene expression in cultured human cells," FEBS Letters, Vol. 579, No. 21, 4829-4836, 2005.
doi:10.1007/3-540-29717-0_8 Google Scholar
7. Didelot, C., E. Schmitt, M. Brunet, L. Maingret, A. Parcellier, and C. Garrido, "Heat shock proteins: Endogenous modulators of apoptotic cell death ," Handb. Exp. Pharmacol., Vol. 172, 171-198, 2006.
doi:10.1016/S0014-5793(03)00413-7 Google Scholar
8. De Pomerai, D., B. Smith, A. Dawe, K. North, T. Smith, D. Archer, I. Duce, D. Jones, and E. Candido, "Microwave radiation can alter protein conformation without bulk heating," FEBS Letters, Vol. 543, No. 1--3, 93-97, 2003.
doi:10.1002/jcp.20327 Google Scholar
9. Caraglia, M., M. Marra, F. Mancinelli, G. D'Ambrosio, R. Massa, A. Giordano, A. Budillon, A. Abbruzzese, and E. Bismuto, "Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of multi-chaperone complex in human epidermid cancer cells," Journal of Cellular Physiology, Vol. 204, 539-548, 2005.
doi:10.1016/j.imlet.2003.11.025 Google Scholar
10. Sreedhae, A. S., G. Nardai, and P. Csermeley, "Enhacement of complement induced cell lysis: A novel mechanism for the anticancer e®ects of HSP-90 inhibitors ," Inmunology letters, Vol. 92, 157-161, 2004.
doi:10.1379/1466-1268(2000)005<0291:TDOHSP>2.0.CO;2 Google Scholar
11. Loones, M. T., Y. H. Chang, and M. Morange, "The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggest a role in neuronal and non neuronal differentiation," Cell Stress Chaperones, Vol. 5, No. 4, 291-305, 2000.
doi:10.1016/0304-3940(94)90794-3 Google Scholar
12. Gass, P., H. Schroder, P. Prior, and M. Kiessling, "Constitutive expression of heat shock protein 90 (HSP90) in neurons of the rat brain," Neuroscience Letter, Vol. 182, No. 2, 188-192, 1994.
doi:10.1379/1466-1268(1998)003<0188:CEOHSP>2.3.CO;2 Google Scholar
13. D`Souza, S. M. and I. R. Brown, "Constitutive expression of heat shock proteins HSP-90, HSP-70 and HSP-60 in neuronal and non neuronal tissues of the rat during postnatal development ," Cell Stress Chaperonas, Vol. 3, 188-199, 1998.
doi:10.1016/S0006-2952(98)00120-8 Google Scholar
14. Scheibel, T. and J. Buchner, "The HSP90 complex-a super-chaperone machine as a novel drug target," Biochem. Pharmacol., Vol. 56, No. 6, 675-682, 1998.
doi:10.1146/annurev.pharmtox.37.1.297 Google Scholar
15. Pratt, W. B., The role of the HSP90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase , Annu. Rev. Pharmacol. Toxicol., Vol. 37, 297-326, 1997. Google Scholar
16. Someren, J. S., L. E. Faber, J. D. Klein, and J. A. Tumlin, "Heat shock proteins 70 and 90 increase calcineurin activity in vitro through calmodulin-dependent and independent mechanisms,", Vol. 260, No. 3, 619-625, 1999.
doi:10.1006/bbrc.1998.9319 Google Scholar
17. Garnier, C., P. Barbier, R. Gilli, C. Lopez, V. Peyrot, and C. Briand, "Heat-shock protein 90 (HSP90) binds in vitro to tubulin dimer and inhibits microtubule formation," Biochem. Biophys. Res. Commun., Vol. 250, No. 2, 414-419, 1998. Google Scholar
18. Miyata, Y. and I. Yahara, "Cytoplasmic 8 S glucocorticoid receptor binds to actin filaments through the 90-kDa heat shock protein moiety," J. Biol. Chem., Vol. 266, No. 14, 8779-8783, 1991.
doi:10.1016/0006-8993(93)90306-8 Google Scholar
19. Kawagoe, J., K. Abe, M. Aoki, and K. Kogore, "Induction of HSP-90α heat shock mRNA after transient global ischemia in gerbil hippocampus ," Brain Research, Vol. 621, 121-125, 1993.
doi:10.1073/pnas.0711365105 Google Scholar
20. Callahan, M. K., M. Garg, and P. K. Srivastava, "Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation ," Proc. Natl. Acad. Sci. USA., Vol. 105, No. 5, 1662-1667, 2008.
doi:10.1002/cne.20994 Google Scholar
21. Adori, C., R. D. Ando, G. G. Kovacs, and G. Bagdy, "Damage of serotonergic axons and immunolocalization of HSP-27, HSP72, and HSP90 molecular chaperones after a single dose of MDMA administration in Dar Agouti rat: Temporal, spatial, and cellular patterns," The Journal of Comparative Neurology, Vol. 497, No. 2, 251-269, 2006.
doi:10.1016/j.nbd.2006.06.017 Google Scholar
22. Batulan, Z., D. M. Taylor, R. J. Aarons, S. Minotti, M. M. Doroudchi, J. Nalbantoglu, and H. D. Durham, "Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis," Neurobiol. Dis., Vol. 24, No. 2, 213-225, 2006. Google Scholar
23. Uryu, K., C. Richter-Landsberg, W.Welch, E. Sun, O. Goldbaum, E. H. Norris, C. T. Pham, I. Yazawa, K. Hilburger, M. Micsenyi, and B. I. Giasso, "Convergence of heat shock protein 90 with ubiquitin in ¯lamentous alpha-synuclein inclusions of alpha-synucleinopathies Am," J. Pathol., Vol. 168, No. 3, 947-961, 2006.
doi:10.1111/j.1471-4159.2006.04221.x Google Scholar
24. DelloRusso, C., P. PolaK, P. Mercado, A. Spagnolo, A. Sharp, P. Murphy, A. Kalman, J. Burrows, L. Fritz, and L. Feinstein, "The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygedanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis ," Journal of Neurochemestry, Vol. 99, 1351-1362, 2006.
doi:10.1016/S0361-9230(00)00325-7 Google Scholar
25. Ohtsuka, K. and T. Suzuki, "Roles of molecular chaperones in the nervous system," Brain Research Bulletin, Vol. 53, No. 2, 141-146, 2000.
doi:10.1002/glia.20075 Google Scholar
26. Jeon, S. G., S. W. Park, D. W. Kim, J. H. Seo, J. Y. Cho, S. Y. Lim, and S. D. Kim, "Glial expression of the 90-kDa heat shock protein (HSP-90) and the 94-kDa Glucose-regulated protein (GRP94) following an excitotoxic lesion in the mouse hippocampus ," Glia, Vol. 48, 250-258, 2004. Google Scholar
27. Lanneau, D., A. De Thonel, S. Maurel, C. Didelot, and C. Garrido, "Apoptosis versus cell di®erentiation," Prion., Vol. 1, 53-60, 2007.
doi:10.1203/01.PDR.0000142732.09325.61 Google Scholar
28. Chiral, M., J. F. Grongnet, J. C. Plumier, and J. C. David, "Effects of hypoxia on stress proteins in the piglet brain at birth," Pediatric Research, Vol. 56, No. 5, 775-782, 2004.
doi:10.1080/09553000600771549 Google Scholar
29. Chauhan, V., A. Mariampillai, G. B. Gajda, A. Thansandote, and J. P. McNamee, "Analysis of pro-to-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field ," Int. J. Radiat. Biol., Vol. 82, No. 5, 347-354, 2006. Google Scholar
30. Jorge-Mora, M., J. Misa-Agusti~no, J. C. Bregains, F. J. Ares-Pena, F. J. Jorge-Barreiro, and E. Lopez-Martn, "Microwave exposure of rats to thermal and non-thermal 2.45 GHz radiation produces changes in neuronal expression of heat shock protein (HSP-90) ," Proceedings of Biological Effects of Electromagnetic Fields, EMF , Vol. 2, 1030-1034, 2006. Google Scholar
31. Misa-Agustino, M., J. Jorge-Mora, C. Bregains, F. J. Ares-Pena, F. J. Jorge-Barreiro, and E. Lopez-Martn, "Exposure of rat thyroid gland to 2450 MHz microwave induces changes in expression of HSP-90," Proceedings of Biological Effects of Electromagnetic Fields, EMF, Vol. 2, 960-233--173-9008, 2006.
doi:10.1269/jrr.07063 Google Scholar
32. Li, M., Y. Wang, Y. Zhang, Z. Zhou, and Z. Yu, "Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: A potential mechanism for cognition impairment following chronic low-power-density microwave exposure," J. Radiat. Res., Vol. 49, No. 2, 163-170, 2008. Google Scholar
33. Koenigstein, D. and D. Hansen, "A new family of TEM-cells with enlargedbandwidth and optimized working volume ," Proc. 7th Int. Zurich Symp. Elctromagn. Compat., 127-132, Zurich, Switzerland, 2007.
34. Schmid & Partner Engineering AG, , Reference manual for the SEMCAD simulation plat-form for electromagnetic compatibility, antenna design and dosimetry , 2006, www.semcad.com.
35. Schaffner Electrotest Gmbh, GTEM Test Cells, Datasheet 2005, , .
36. Paxinos, G. and C. H. Watson, The Rat Brain in Stereotaxic Coordinates, 4th Ed., Academic Press, London, 1998.
doi:10.1016/j.exger.2008.01.004
37. Perez, F. P., X. Zhou, J. Morisaki, and D. Jurivich, "Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response," Exp. Gerontol., Vol. 43, No. 4, 307-316, 2008.
doi:10.1002/jcb.10036 Google Scholar
38. Di Carlo, A., N. White, F. Guo, P. Garrett, and T. Litovitz, "Chronic electromagneticfield exposure decreases HSP70 levels and lowers cytoprotection," J. Cell Biochem., Vol. 84, No. 3, 447-454, 2002.
doi:10.1016/S0378-1119(98)00569-1 Google Scholar
39. Huang, H., W. C. Lee, J. H. Lin, S. C. Jian, S. J. Mao, P. C. Yang, T. Y. Huang, and Y. C. Liu, "Molecular cloning and characterization of porcine cDNA encoding a 90-kDa heat shock protein and its expression following hyperthermia," Gene., Vol. 26, No. 2, 307-315, 1999.
doi:10.1006/excr.1995.1239 Google Scholar
40. Quraishi, H. and I. R. Brown, "Expression of heat shock protein 90(HSP90) in neural and nonneural tissues of control and hyperthermic rabbit ," Experimental Cell Research, Vol. 219, 358-363, 1995.
doi:10.1242/jeb.01211 Google Scholar
41. Ramaglia, V. and L. T. Buck, "Time-dependent expression of heat shock proteins 70 and 90 in tissues of anoxic western painted turtle ," The Journal of Experimental Biology, Vol. 207, 3775-3784, 2004.
doi:10.1523/JNEUROSCI.4142-07.2007 Google Scholar
42. Pignataro, L., A. N. Miller, L. Ma, S. Midha, P. Protiva, D. G. Herrera, and N. L. Harrison, "Alcohol regulates gene expression in neurons via activation of heat shock factor 1," J. Neurosci. 221, Vol. 27, No. 47, 12957-12966, 2007.
doi:10.1109/MAP.2003.1252818 Google Scholar
43. Lin, J. C., "Cellular telephone radiation and electroencephalo-grams (EEG) of the human brain," IEEE Antennas and Propagation Magazine, Vol. 45, No. 5, 150-153, 2003. Google Scholar
44. Martnez, A., Estudio y desarrollo de tecnicas de evaluacion de dosimetra electromagnetica y de niveles de exposicion a emisiones radiolelectricas, Doctoral tesis, 2004.
45. Institute of Electrical and Electronics Engineers "IEEE standard for safety levels with respect to human exposure to radofrequency electromagnetic fields, 3 kHz to 300 GHz ," IEEE C95, 1-1999, Piscataway, NJ., 1999.
doi:10.1016/S0079-6123(06)62007-4 Google Scholar
46. D'Andrea, J. A., J. M. Ziriax, and E. R. Adair, "Radio frequency electromagnetic ¯elds: Mild hyperthermia and safety standards," Prog. Brain Res., Vol. 162, 107-135, 2007.
doi:10.1002/jnr.21951 Google Scholar
47. Lopez-Martin, E., J. Bregains, J. L. Relova-Quinteiro, C. Cadarso-Suarez, F. J. Jorge Barreiro, and F. J. Ares Pena, "The action of pulse-modulated GSM radiation increases regional changes in brain activity and c-Fos expression in cortical and subcortical areas in a rat model of picrotoxin-induced seizure proneness ," Journal of Neuroscience Research, Vol. 87, 1484-1499, 2009.
doi:10.1016/S0302-4598(00)00064-7 Google Scholar
48. Peinnequin, A., A. Piriou, J. Mathieu, V. Dabouis, C. Sebbah, R. Malabiau, and J. C. Debouzy, "Non-thermal effects of continuous 2.45 GHz microwaves on Fas-induced apoptosis in human Jurkat T-cell line," Bioelectrochemistry, Vol. 51, No. 2, 157-161, 2000.
doi:10.1016/S0140-6736(00)03243-8 Google Scholar
49. Hyland, G. J., "Physics and biology of mobile telephony," Lancet. 25, Vol. 356, No. 9244, 1833-1836, 2000.
doi:10.1046/j.1365-2826.2001.00688.x Google Scholar
50. Joels, M., "Corticosteroid actions in the hippocampus," J. Neuroendocrinol., Vol. 13, No. 8, 657-669, 2001. Google Scholar
51. Siegel, R., I. Chowers, N. Conforti, and S. Feldman, "Corti-cotrophin and corticosterone secretory patterns following acute neurogenic stress, in intact and in variously hypothalamic deaffer-ented male rats ," Brain Res. 28, Vol. 188, No. 2, 399-410, 1980.
doi:10.1016/j.bmcl.2006.04.008 Google Scholar
52. Khan, M. G., E. Konde, F. Dossou, D. C. Labaree, R. B. Hochberg, and R. M. Hoyte, "Microwave-enhanced nucle-ophilic °uorination in the synthesis of fluoropyridyl derivatives of [3, 2-c] pyrazolo-corticosteroids, potential glucocorticoid receptor-mediated imaging agents ," Bioorg. Med. Chem. Lett. 1, Vol. 16, No. 13, 3454-3458, 2006.
doi:10.1667/0033-7587(2001)155[0584:EOIACE]2.0.CO;2 Google Scholar
53. Stagg, R. B., L. H. Hawel 3rd, K. Pastorian, C. Cain, W. R. Adey, and C. V. Byus, "Effect of immobilization and concurrent exposure to a pulse-modulated microwave field on core body temperature, plasma ACTH and corticosteroid, and brain ornithine decarboxylase, Fos and Jun mRNA ," Radiat. Res., Vol. 155, No. 4, 584-592, 2001.
doi:10.1667/RR0922.1 Google Scholar
54. Djeridane, Y., Y. Touitou, and R. De Seze, "Influence of electromagnetic fields emitted by GSM-900 cellular telephones on the circadian patterns of gonadal, adrenal and pituitary hormones in men," Radiat. Res., Vol. 169, No. 3, 337-343, 2008.
doi:10.1016/j.neulet.2005.12.082 Google Scholar
55. Lopez-Martn, E., J. L. Relova-Quinteiro, R. Gallego-Gomez, M. Peleteiro-Fernandez, F. J. Jorge-Barreiro, and F. J. Ares-Pena, "GSM radiation triggers seizures and increases cerebral c-Fos positivity in rats pretreated with subconvulsive doses of picrotoxin ," Neurosci. Lett. 1, Vol. 398, No. 1-2, 139-144, 2006.
doi:10.2528/PIER08101307 Google Scholar
56. Lopez-Martin, E., J. Bregains, F. J. Jorge Barreiro, J. L. Sebastian-Franco, E. Moreno Piquero, and F. J. Ares Pena, "Set-up for measurement of the power absorbed from 900MHz GSM standing waves by small animals, illustrated by application to picrotoxin-treated rats," Progress In Electromagnetics Research, Vol. 87, 149-165, 2008.
doi:10.1016/j.biolcel.2004.01.009 Google Scholar
57. Gallyas, F., F. Orsolya, and M. Mazlo, "Gel-to gel phase transition may occur in mammalian cells: Mechanism of formation of dark (compacted) neurons ," Biology of the Cell, Vol. 96, 313-324, 2004. Google Scholar
58. Gallyas, F., J. Pal, and P. Bukoviks, "Supravital microwave experiments support that the formation on dark neurons is propelled by phase transition in an intracellular gel system ," Brain Research, in press, 2009.
doi:10.1016/j.cccn.2003.10.012 Google Scholar
59. Ilhan, A., A. Gurel, F. Armutcu, S. Kamisli, M. Iraz, O. Akyol, and S. Ozen, "Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain," Clinica Chimica Acta, Vol. 340, 153-162, 2004.
doi:10.1006/bbrc.2001.5427 Google Scholar
60. Garrido, C., S. Gurbuxani, L. Ravagnan, and G. Kroemer, "Heat shock proteins: Endogenous modulators of apoptotic cell death ," Biochemical and Biophysical Research Communications, Vol. 286, 433-442, 2001. Google Scholar