1. MacQueen, L. A., M. Thibault, M. D. Buschmann, and M. R. Wertheimer, "Electro-manipulation of biological cells in microdevices," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, No. 4, 1261-1268, 2012. Google Scholar
2. Li, H., T. Ye, and K. Y. Lam, "Numerical modeling of motion trajectory and deformation behavior of a cell in a nonuniform electric field ," Biomicrofluidics, Vol. 5, 021101, 2011.
doi:10.1063/1.3574449 Google Scholar
3. Jones, T. B., "Basic theory of dielectrophoresis and electrorotation," IEEE Engineering in Medicine and Biology Magazine, 33-42, 2003.
doi:10.1109/MEMB.2003.1304999 Google Scholar
4. Cena, E. G., C. Daltona, Y. Lia, S. Adamiab, L. M. Pilarskib, and K. V. I. S. Kaler, "A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells," Journal of Microbiological Methods, Vol. 58, 387-401, 2004.
doi:10.1016/j.mimet.2004.05.002 Google Scholar
5. Sancho, M., G. Martinez, S. Munoz, J. L. Sebastian, and R. Pethig, "Interaction between cells in dielectrophoresis and electrorotation experiments," Biomicrofluidics, Vol. 4, 022802, 2010.
doi:10.1063/1.3454129 Google Scholar
6. Hoettges, K. F., "Dielectrophoresis as a cell characterisation tool," Microengineering in Biotechnology: Methods in Molecular Biology, Vol. 583, 183-198, 2008. Google Scholar
7. Zienkiewicz, O. C., The Finite Element Method, 3rd Edition, McGraw-Hill, London, 1977.
8. Johnson, C., Numerical Solutions of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987.
9. Sekine, K., "Application of boundary element method to calculation of the complex permittivity of suspensions of cells in shape of D1h symmetry," Bioelectrochemistry, Vol. 52, 1-7, 2000.
doi:10.1016/S0302-4598(00)00072-6 Google Scholar
10. Sancho, M., G. Martinez, and C. Martin, "Accurate dielectric modeling of shelled particles and cells," J. Electrost., Vol. 57, 143-156, 2003.
doi:10.1016/S0304-3886(02)00123-7 Google Scholar
11. Sekine, K., Y. Watanabe, S. Hara, and K. Asami, "Boundary-element calculations for dielectric behavior of doublet-shaped cells," Biochim. Biophys. Acta, Vol. 1721, 130-138, 2005.
doi:10.1016/j.bbagen.2004.10.010 Google Scholar
12. Pruyne, D., A. Legesse-Miller, L. Gao, Y. Dong, and A. Bretscher, "Mechanisms of polarized growth and organelle segregation in yeast," Annu. Rev. Cell Dev. Biol., Vol. 20, 559-591, 2004.
doi:10.1146/annurev.cellbio.20.010403.103108 Google Scholar
13. McMurray, M. A. and J. Thorner, "Septins: Molecular partitioning and the generation of cellular asymmetry," Cell Division, Vol. 4, 18, 2009.
doi:10.1186/1747-1028-4-18 Google Scholar
14. Held, P., "Monitoring growth of beer brewing strains of saccharomyces cerevisiae - The utility of synergy H1 for providing high quality kinetic data for yeast growth applications,", Biotek Application Note, 2010. Google Scholar
15. Asami, K., "Characterization of biological cells by dielectric spectroscopy," Journal of Non-Crystalline Solids, Vol. 305, 268-277, 2002.
doi:10.1016/S0022-3093(02)01110-9 Google Scholar
16. Asami, K. and T. Yonezawa, "Dielectric behavior of non-spherical cells in culture," Biochim. Biophys. Acta, Vol. 1245, 317-324, 1995.
doi:10.1016/0304-4165(95)00116-6 Google Scholar
17. Asami, K., E. Gheorghiu, and T. Yonezawa, "Dielectric behavior of budding yeast in cell separation," Biochim. Biophys. Acta, Vol. 1381, 234-240, 1998.
doi:10.1016/S0304-4165(98)00033-6 Google Scholar
18. Lei, J., J. T. K. Wan, K. W. Yu, and H. Sun, "Dielectric behavior of nonspherical cell suspensions," J. Phys.: Condens. Matter, Vol. 13, 3583-3589, 2001.
doi:10.1088/0953-8984/13/15/302 Google Scholar
19. Bordi, F., C. Cametti, and T. Gili, "Dielectric spectroscopy of erythrocyte cell suspensions. A comparison between Looyenga and Maxwell-Wagner-Hanai effective medium theory formulations," Journal of Non-Crystalline Solids, Vol. 305, 278-284, 2002.
doi:10.1016/S0022-3093(02)01111-0 Google Scholar
20. Adohi, B. J-P., C. V. Bouanga, K. Fatyeyeva, and M. Tabellout, "Application of the Maxwell-Wagner-Hanai effective medium theory to the analysis of the interfacial polarization relaxations in conducting composite films," J. Phys. D: Appl. Phys., Vol. 42, 015302, 2009.
doi:10.1088/0022-3727/42/1/015302 Google Scholar
21. Di Biasio, A., L. Ambrosonne, and C. Cametti, "The dielectric behavior of nonspherical biological cell suspensions: An analytical approach," Biophys. J., Vol. 99, 163-174, 2010.
doi:10.1016/j.bpj.2010.04.006 Google Scholar
22. Asami, K., "Dielectric dispersion in biological cells of complex geometry simulated by the three-dimensional finite difference method," J. Phys. D: Appl. Phys., Vol. 39, 492-499, 2006.
doi:10.1088/0022-3727/39/3/012 Google Scholar
23. Hozel, R., "Electric field calculation for electrorotation electrodes," J. Phys. D: Appl. Phys., Vol. 26, 2112-2116, 1993.
doi:10.1088/0022-3727/26/12/003 Google Scholar
24. Maswiwat, K., M. Holtappels, and J. Gimsa, "Optimizing the electrode shape for four-electrode electrorotation chips," ScienceAsia, Vol. 33, 61-67, 2007.
doi:10.2306/scienceasia1513-1874.2007.33.061 Google Scholar
25. Maswiwat, K., M. Holtappels, and J. Gimsa, "On the field distribution in electrorotation chambers: Influence of electrode shape," Electrochimica Acta, Vol. 51, No. 24, 5215-5220, 2006.
doi:10.1016/j.electacta.2006.03.048 Google Scholar
26. Kakutani, T., S. Shibatani, and M. Sugai, "Electrorotation of non-spherical cells: Theory for ellipsoildal cells with an arbitrary number of shells," Bioelectrochemistry and Bioenergetics, Vol. 31, 131-145, 1993.
doi:10.1016/0302-4598(93)80002-C Google Scholar
27. Laforet, J., M. Frenea-Robin, H. Ceremonie, F. Buret, and L. Nicolas, "Automated cell characterization platform: Application to yeast protoplast study by electrorotation," Proc. of the 1st Int. Conf. on Biomedical Electronics and Devices, Biodevices, Funchal, Portugal, 2008, ISBN:978-989-8111-17-3.. Google Scholar
28. Hughes, M. P., "Computer-aided analysis of conditions for optimizing practical electrorotation," Phys. Med. Biol., Vol. 43, 3639-3648, 1998.
doi:10.1088/0031-9155/43/12/019 Google Scholar
29. Hughes, M. P., X. B. Wang, F. F. Becker, P. R. C. Gascoyne, and R. Pethig, "Computer-aided analyses of electric fields used in electrorotation studies," J. Phys. D: Appl. Phys., Vol. 27, 1564-1570, 1994.
doi:10.1088/0022-3727/27/7/035 Google Scholar
30. Hozel, R., "Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz," Biophys. J., Vol. 73, No. 2, 1103-1109, 1997.
doi:10.1016/S0006-3495(97)78142-6 Google Scholar
31. Vitols, E., R. J. North, and A. W. Linnane, "Studies on the oxidative metabolism of Saccharomyces cerevisiae. I. Observations on the fine structure of the yeast cell," J. Biophys. Biochem. Cytol., Vol. 9, 689-699, 1961.
doi:10.1083/jcb.9.3.689 Google Scholar
32. Moore, C. W., R. del Valle, J. McKoy, A. Pramanik, and R. E. Gordon, "Lesions and preferential initial localization of [S-methyl-3H] bleomycin A2 on Saccharomyces cerevisiae cell walls and membranes," Antimicrob. Agents Chemother., Vol. 36, No. 11, 2497-2505, 1992.
doi:10.1128/AAC.36.11.2497 Google Scholar
33. Mulholland, J., D. Preuss, A. Moon, A. Wong, D. Dubrin, and D. Botstein, "Ultrastructure of the yeast actin cytoskeleton and its association," The Journal of Cell Biology, Vol. 125, No. 2, 1994.
doi:10.1083/jcb.125.2.381 Google Scholar
34. Asami, K. and K. Sekine, "Dielectric modelling of cell division for budding and fission yeast," J. Phys. D: Appl. Phys., Vol. 40, 1128-1133, 2007.
doi:10.1088/0022-3727/40/4/033 Google Scholar
35. Sebastian, J. L., S. Munoz, M. Sancho, G. Martnez, and G. Alvarez, "Electromechanical effects on multilayered cells in nonuniform rotating fields," Physical Review E, Vol. 84, 011926, 2011.
doi:10.1103/PhysRevE.84.011926 Google Scholar
36. Sebastian, J. L., S. Munoz, M. Sancho, and G. Alvarez, "Polarizability of shelled particles of arbitrary shape in lossy media with an application to hematic cells," Physical Review E, Vol. 78, 051905, 2008.
doi:10.1103/PhysRevE.78.051905 Google Scholar
37. Wang, X. B., R. Pethig, and T. B. Jones, "Relationship of dielectrophoretic and electrorotational behaviour exhibited by polarized particles," J. Phys. D: Appl. Phys., Vol. 25, 905-912, 1992.
doi:10.1088/0022-3727/25/6/001 Google Scholar
38. Wang, X. B., Y. Huang, R. Holzel, J. P. H. Burt, and R. Pethig, "Theoretical and experimental investigations of the interdependence of the dielectric, dielectrophoretic and electrorotational behavior of colloidal particles," J. Phys. D: Appl. Phys., Vol. 26, 312-322, 1993.
doi:10.1088/0022-3727/26/2/021 Google Scholar
39. Jones, T. B., Electromechanics of Particles, Cambridge University Press, Cambridge, 1995.
40. Wang, X. J., X. B. Wang, and P. R. C. Gascoyne, "General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method," J. Electrost., Vol. 39, 277-296, 1997.
doi:10.1016/S0304-3886(97)00126-5 Google Scholar
41. Huang, Y., R. Holzel, R. Pethig, and X. B. Wang, "Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies," Phys. Med. Biol., Vol. 37, No. 7, 1499-1517, 1992.
doi:10.1088/0031-9155/37/7/003 Google Scholar
42. Huang, J. P. and K. W. Yu, "First-principles approach to electrorotation assay," J. Phys.: Condens. Matter, Vol. 14, 1213-1221, 2002.
doi:10.1088/0953-8984/14/6/308 Google Scholar
43. Kriegmaier, M., M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosac-charomyces pombe using electrorotation and electroorientation," Biochim. Biophys. Acta, Vol. 1568, 135-146, 2001.
doi:10.1016/S0304-4165(01)00210-0 Google Scholar
44. Misirli, Z., E. T. Oner, and B. Kirdar, "Real imaging and size values of Saccharomyces cerevisiae cells with comparable contrast tuning to two environmental scanning electron microscopy modes," Scanning, Vol. 29, No. 1, 11-19, 2007.
doi:10.1002/sca.20005 Google Scholar
45. Ren, Y., A. M. Donald, and Z. Zhang, "Investigation of the morphology, viability and mechanical properties of yeast cells in environmental SEM," Scanning, Vol. 30, No. 6, 435-442, 2008.
doi:10.1002/sca.20126 Google Scholar
46. Osumi, M., "The ultrastructure of yeast: Cell structure and wall formation," Micron., Vol. 29, No. 2-3, 207-233, 1998.
doi:10.1016/S0968-4328(97)00072-3 Google Scholar
47. Lesage, G. and H. Bussey, "Cell wall assembly in saccharomyces cerevisiae," Microbiol. Mol. Biol. Rev., Vol. 70, No. 2, 317-343, 2006.
doi:10.1128/MMBR.00038-05 Google Scholar
48. Ferrier, G. A., A. N. Hladio, D. J. Thomson, G. E. Bridges, M. Hedayatipoor, S. Olson, and M. R. Freeman, "Microfluidic electromanipulation with capacitive detection for the mechanical analysis of cells," Biomicrofluidics, Vol. 2, 044102 (13pages), 2008. Google Scholar
49. Christopher, L. D., H. M. Gerard, and B. K. Douglas, "On the dielectric method of monitoring cellular viability," Pure & App. Chern., Vol. 65, No. 9, 1921-1926, 1993.
doi:10.1351/pac199365091921 Google Scholar
50. Kestin, J., H. E. Khalifa, and R. J. Correia, "Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20-150°C and the pressure range 0.1-35MPa," J. Phys. Chem. Ref. Data, Vol. 10, No. 1, 1981. Google Scholar
51. Gascoyne, P. R. C., F. F. Becker, and X. B. Wang, "Numerical analysis of the influence of experimental conditions on the accuracy of dielectric parameters derived from electrorotation measurements," Bioelectrochemistry and Bioenergetics, Vol. 36, 115-125, 1995.
doi:10.1016/0302-4598(94)05015-M Google Scholar
52. Gimsa, J. and D. Wachner, "A polarization model overcoming the geometric restrictions of the Laplace solution for spheroidal cells: Obtaining new equations for field induced forces and transmembrane potential," Biophys. J., Vol. 77, 1316-1326, 1999.
doi:10.1016/S0006-3495(99)76981-X Google Scholar
53. Asami, K., E. Gheorghiu, and T. Yonezawa, "Dielectric behavior of budding yeast in cell separation," Biochim. Biophys. Acta, Vol. 1381, 234-240, 1998.
doi:10.1016/S0304-4165(98)00033-6 Google Scholar