1. Harrington, R. F., "Boundary integral formulations for homogeneous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016 Google Scholar
2. Nédélec, J.-C., Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer-Verlag, 2001.
doi:10.1007/978-1-4757-4393-7_1
3. Buffa, A., R. Hiptmair, T. von Petersdorff, and C. Schwab, "Boundary element methods for Maxwell equations on Lipschitz domains," Numer. Math., Vol. 95, 459-485, 2003.
doi:10.1007/s00211-002-0407-z Google Scholar
4. Buffa, A. and R. Hiptmair, "Regularized combined field integral equations," Numer. Math., Vol. 100, 1-19, 2005.
doi:10.1007/s00211-004-0579-9 Google Scholar
5. Tzoulis, A. and T. Eibert, "A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects," IEEE Trans. Antennas and Propagation, Vol. 53, 3358-3366, Oct. 2005. Google Scholar
6. Andriulli, F., K. Cools, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas and Propagation, Vol. 56, 2398-2412, Aug. 2008.
doi:10.1109/TAP.2008.926788 Google Scholar
7. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Synthesis Lectures on Computational Electromagnetics, Morgan & Claypool Publishers, 2008.
8. Wang, X.-C., Z. Peng, and J.-F. Lee, "Multi-solver domain decomposition method for modeling EMC effects of multiple antennas on a large air platform," IEEE Trans. Electromagnetic Compatibility, Vol. 54, 375-388, Apr. 2012.
doi:10.1109/TEMC.2011.2161871 Google Scholar
9. Hesford, A. J. and W. C. Chew, "On preconditioning and the eigensystems of electromagnetic radiation problems," IEEE Trans. Antennas and Propagation, Vol. 56, 2413-2420, Aug. 2008.
doi:10.1109/TAP.2008.926783 Google Scholar
10. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301 Google Scholar
11. Peng, Z., K.-H. Lim, and J.-F. Lee, "Non-conformal domain decomposition methods for solving large multi-scale electromagnetic scattering problems," Proceedings of IEEE, Vol. 101, No. 2, 298-319, 2013.
doi:10.1109/JPROC.2012.2217931 Google Scholar
12. Li, M.-K. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antennas and Propagation, Vol. 56, 2389-2397, Aug. 2008.
doi:10.1109/TAP.2008.926785 Google Scholar
13. Solis, D. M., J. M. Taboada, F. Obelleiro, and L. Landesa, "Optimization of an optical wireless nano link using directive nanoantennas," Optics Express, Vol. 21, No. 2, 2369-2377, 2013.
doi:10.1364/OE.21.002369 Google Scholar
14. Solis, D. M., J. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. G. de Abajo, "Toward ultimate nanoplasmonics modeling," ACS Nano, Vol. 8, No. 8, 7559-7570, 2014.
doi:10.1021/nn5037703 Google Scholar
15. Velamparambil, S., W. C. Chew, and J. Song, "10 million unknowns: Is it that big? [Computational electromagnetics]," IEEE Antennas and Propagation Magazine, Vol. 45, 43-58, Apr. 2003.
doi:10.1109/MAP.2003.1203119 Google Scholar
16. Ergül, Ö. and L. Gürel, "Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems," IEEE Trans. Antennas and Propagation, Vol. 56, No. 8, 2335-2345, 2008.
doi:10.1109/TAP.2008.926757 Google Scholar
17. Pan, X.-M., W.-C. Pi, M.-L. Yang, Z. Peng, and X.-Q. Sheng, "Solving problems with over one billion unknowns by the MLFMA," IEEE Trans. Antennas and Propagation, Vol. 60, 2571-2574, May 2012.
doi:10.1109/TAP.2012.2189746 Google Scholar
18. Michiels, B., J. Fostier, I. Bogaert, and D. de Zutter, "Full-wave simulations of electromagnetic scattering problems with billions of unknowns," IEEE Trans. Antennas and Propagation, Vol. 63, No. 2, 796-799, 2015.
doi:10.1109/TAP.2014.2380438 Google Scholar
19. Taboada, J., L. Landesa, F. Obelleiro, J. Rodriguez, J. Bertolo, M. Araujo, J. Mourino, et al., "High scalability FMM-FFT electromagnetic solver for supercomputer systems," IEEE Antennas and Propagation Magazine, Vol. 51, No. 6, 20-28, 2009.
doi:10.1109/MAP.2009.5433091 Google Scholar
20. Wei, F. and A. E. Yilmaz, "A hybrid message passing/shared memory parallelization of the adaptive integral method for multi-core clusters," Parallel Computing, Vol. 37, No. 6, 279-301, 2011.
doi:10.1016/j.parco.2011.03.006 Google Scholar
21. Wei, F. and A. Yilmaz, "A more scalable and efficient parallelization of the adaptive integral method - Part I: Algorithm," IEEE Trans. Antennas and Propagation, Vol. 62, 714-726, Feb. 2014.
doi:10.1109/TAP.2013.2291559 Google Scholar
22. Zhang, Y., Z. Lin, X. Zhao, and T. Sarkar, "Performance of a massively parallel higher-order method of moments code using thousands of CPUS and its applications," IEEE Trans. Antennas and Propagation, Vol. 62, 6317-6324, Dec. 2014.
doi:10.1109/TAP.2014.2361135 Google Scholar
23. Adams, R., Y. Xu, X. Xu, S. Gedney, and F. Canning, "Modular fast direct electromagnetic analysis using local-global solution modes," IEEE Trans. Antennas and Propagation, Vol. 56, 2427-2441, Aug. 2008.
doi:10.1109/TAP.2008.926769 Google Scholar
24. Wei, J.-G., Z. Peng, and J.-F. Lee, "A fast direct matrix solver for surface integral equation methods for electromagnetic wave scattering from non-penetrable targets," Radio Science, Vol. 47, No. RS5003, 2012. Google Scholar
25. Heldring, A., J. M. Tamayo, J. Rius, et al. "Accelerated direct solution of the method-of-moments linear system," Proceedings of the IEEE, Vol. 101, No. 2, 364-371, 2013.
doi:10.1109/JPROC.2012.2193369 Google Scholar
26. Ergul, O. and L. Gurel, "Accurate solutions of extremely large integral-equation problems in computational electromagnetics," Proceedings of the IEEE, Vol. 101, No. 2, 342-349, 2013.
doi:10.1109/JPROC.2012.2204429 Google Scholar
27. Vipiana, F., M. A. Francavilla, and G. Vecchi, "EFIE modeling of high-definition multiscale structures," IEEE Trans. Antennas and Propagation, Vol. 58, 2362-2374, Jul. 2010. Google Scholar
28. Nair, N. and B. Shanker, "Generalized method of moments: A novel discretization technique for integral equation," IEEE Trans. Antennas and Propagation, Vol. 59, 2280-2293, Jun. 2011.
doi:10.1109/TAP.2011.2143652 Google Scholar
29. Tong, M. S. and W. C. Chew, "A novel mesh less scheme for solving surface integral equations with flat integral domain," IEEE Trans. Antennas and Propagation, Vol. 60, 3285-3293, Jul. 2012. Google Scholar
30. Bendali, A., F. Collino, M. Fares, and B. Steif, "Extension to nonconforming meshes of the combined current and charge integral equation," IEEE Trans. Antennas and Propagation, Vol. 60, 4732-4744, Oct. 2012. Google Scholar
31. Chouly, F. and N. Heuer, "A Nitsche-based domain decomposition method for hypersingular integral equations," Numer. Math., Vol. 121, 705-729, Aug. 2012.
doi:10.1007/s00211-012-0451-2 Google Scholar
32. Ubeda, E., J. Rius, and A. Heldring, "Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects," IEEE Trans. Antennas and Propagation, Vol. 62, 4171-4186, Aug. 2014.
doi:10.1109/TAP.2014.2325954 Google Scholar
33. Peng, Z., K.-H. Lim, and J.-F. Lee, "A discontinuous Galerkin surface integral equation method for electromagnetic wave scattering from nonpenetrable targets," IEEE Trans. Antennas and Propagation, Vol. 61, No. 7, 3617-3628, 2013.
doi:10.1109/TAP.2013.2258394 Google Scholar
34. Peng, Z., R. Hiptmair, Y. Shao, and B. MacKie-Mason, "Domain decomposition preconditioning for surface integral equations in solving challenging electromagnetic scattering problems," IEEE Trans. Antennas and Propagation, doi: 10.1109/TAP.2015.2500908, 2015.
doi:10.1109/TAP.2013.2258394 Google Scholar
35. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propagation, Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
36. Vecchi, G., "Loop-star decomposition of basis functions in the discretization of the EFIE," IEEE Trans. Antennas and Propagation, Vol. 47, No. 2, 339-346, 1999.
doi:10.1109/8.761074 Google Scholar
37. Lee, J. F., R. Burkholder, and R. Lee, "Loop star basis functions and a robust preconditioner for EFIE scattering problems," IEEE Trans. Antennas and Propagation, Vol. 51, 1855-1863, Aug. 2003.
doi:10.1109/TAP.2003.814736 Google Scholar
38. Adams, R. J., "Physical and analytical properties of a stabilized electric field integral equation," IEEE Trans. Antennas and Propagation, Vol. 52, 362-372, Feb. 2004.
doi:10.1109/TAP.2004.823957 Google Scholar
39. Stephanson, M. and J.-F. Lee, "Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions," IEEE Trans. Antennas and Propagation, Vol. 57, 1274-1279, Apr. 2009.
doi:10.1109/TAP.2009.2016173 Google Scholar
40. Bruno, O., T. Elling, R. Paffenroth, and C. Turc, "Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations," J. Comput. Phys., Vol. 228, 6169-6183, Sep. 2009.
doi:10.1016/j.jcp.2009.05.020 Google Scholar
41. Wiedenmann, O. and T. F. Eibert, "A domain decomposition method for boundary integral equations using transmission condition based on the near-zone coupling," IEEE Trans. Antennas and Propagation, Vol. 62, 4105-4114, Aug. 2014.
doi:10.1109/TAP.2014.2322881 Google Scholar
42. Echeverri Bautista, M., F. Vipiana, M. Francavilla, J. Tobon Vasquez, and G. Vecchi, "A nonconformal domain decomposition scheme for the analysis of multi-scale structures," IEEE Trans. Antennas and Propagation, doi: 10.1109/TAP.2015.2430873, 2015. Google Scholar
43. Toselli, A. and O. Widlund, Domain Decomposition Methods - Algorithms and Theory, Springer, 2005.
44. Peng, Z., X.-C. Wang, and J.-F. Lee, "Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects," IEEE Trans. Antennas and Propagation, Vol. 59, 3328-3338, Sep. 2011.
doi:10.1109/TAP.2011.2161542 Google Scholar
45. Langer, U., G. Of, O. Steinbach, and W. Zulehner, "Inexact data-sparse boundary element tearing and interconnecting methods," SIAM J. Sci. Comput., Vol. 29, No. 1, 290-314, 2007.
doi:10.1137/050636243 Google Scholar
46. Steinbach, O. and M. Windisch, "Stable boundary element domain decomposition methods for the Helmholtz equation," Numer. Math., Vol. 118, No. 1, 171-195, 2011.
doi:10.1007/s00211-010-0315-6 Google Scholar
47. Karypis, G. and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular graphs," SIAM J. Sci. Comput., Vol. 20, No. 1, 359-392 (electronic), 1998.
doi:10.1137/S1064827595287997 Google Scholar
48. Parks, M. L., E. D. Sturler, G. Mackey, D. D. Johnson, and S. Maiti, "Recycling Krylov subspaces for sequences of linear systems," SIAM J. Sci. Comput., Vol. 28, No. 5, 1651-1674, 2006.
doi:10.1137/040607277 Google Scholar
49. Wei, J.-G., Z. Peng, and J.-F. Lee, "Multi-scale electromagnetic computations using a hierarchical multi-level fast multipole algorithm," Radio Science, Vol. 49, No. 11, 1022-1040, 2014.
doi:10.1002/2013RS005250 Google Scholar
50. Pan, X.-M., J.-G. Wei, Z. Peng, and X.-Q. Sheng, "A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm," Radio Science, Vol. 47, No. RS1011, 2012. Google Scholar
51. Ho, K. L. and L. Greengard, "A fast direct solver for structured linear systems by recursive skeletonization," SIAM J. Sci. Comput., Vol. 34, No. 5, A2507-A2532, 2012.
doi:10.1137/120866683 Google Scholar
52. Mahaffey, J. V., "A direct approach at eld computation using the FMM framework,", Master's Thesis, The Ohio State University, Columbus, Ohio, 2012. Google Scholar
53. Taboada, J. M., M. G. Araújo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodríguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetic (invited paper)," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603 Google Scholar
54. Taboada, J., M. Araújo, F. Basteiro, J. Rodríguez, and L. Landesa, "MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics," Proceedings of the IEEE, Vol. 101, 350-363, Feb. 2013.
doi:10.1109/JPROC.2012.2194269 Google Scholar
55. Lawrence Livermore National Laboratory "Visit users manual,", https://wci.llnl.gov/content/assets/docs/simulation/computer-codes/visit/VisItUsersManual1.5.pdf, 2005. Google Scholar
56. Campbell, S. L., I. C. F. Ipsen, C. T. Kelley, and C. D. Meyer, "GMRES and the minimal polynomial," BIT Numer. Math., Vol. 36, 664-675, 1996.
doi:10.1007/BF01733786 Google Scholar
57. Meurant, G. and J. D. Tebbens, "The role eigenvalues play in forming GMRES residual norms with non-normal matrices," Numer. Algorithms, Vol. 68, No. 1, 143-165, 2015.
doi:10.1007/s11075-014-9891-3 Google Scholar
58. Dolean, V., P. Jolivet, and F. Nataf, "An introduction to domain decomposition methods: Algorithms, theory and parallel implementationAlgorithms, theory and parallel implementation,", Master, France, 2015.
doi:10.1007/s11075-014-9891-3 Google Scholar