1. Balabanian, N. and T. A. Bickart, Electrical Network Theory, 80, John Wiley and Sons, New York, 1969.
2. Bamberg, P. and S. Sternberg, A Course in Mathematics for Students of Physics: 2,, Ch. 12, Cambridge U. Press, NY, 1990.
3. Bossavit, A., Computational Electromagnetism,V ariational Formulations,Edge Elements,Complementarity,, Academic Press, Boston, 1997.
4. Brisson, E., "Representing geometric structures in d dimensions: Topology and order," Discrete and Computational Geometry, Vol. 9, 387-426, 1993.
doi:10.1007/BF02189330 Google Scholar
5. Brown, M. L., "Scalar potentials in multiply connected regions," Int. J. Numer. Meth. Eng., Vol. 20, 665-680, 1984.
doi:10.1002/nme.1620200406 Google Scholar
6. Chammas, P. and P. R. Kotiuga, "Sparsity vis a vis Lanczos methods for discrete helicity functionals," Proc. of the Third Int. Workshop on Electric and Magnetic Fields, A. Nicolet and R. Belmans (eds.), 1996. Google Scholar
7. Croom, F. H., Basic Concepts of Algebraic Topology, Chaps. 2, 7.3, 4.5, Springer-Verlag, New York, 1978.
doi:10.1007/978-1-4684-9475-4
8. Dodziuk, J., "Combinatorial and continuous hodge theories," Bull. AMS, Vol. 80, 1014-1016, 1974.
doi:10.1090/S0002-9904-1974-13615-3 Google Scholar
9. Dodziuk, J., "Finite-difference approach to the hodge theory of harmonic forms," Am. J. Math., Vol. 98, 79-104, 1976.
doi:10.2307/2373615 Google Scholar
10. Eilenberg, S. and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, New Jersey, 1952.
doi:10.1515/9781400877492
11. Gross, P. W. and P. R. Kotiuga, "Finite element-based algorithms to make cuts for magnetic scalar potentials: Topological constraints and computational complexity,", this volume. Google Scholar
12. Gross, P. W. and P. R. Kotiuga, "A challenge for magnetic scalar potential formulations of 3-d eddy current problems: Multiply connected cuts in multiply connected regions which necessarily leave the cut complement multiply connected," Electric and Magnetic Fields: From Numerical Models to Industrial Applications, A. Nicolet and R. Belmans (eds.), 1–20, New York, 1995. Proc. of the Second Int. Workshop on Electric and Magnetic Fields. Google Scholar
13. Kotiuga, P. R., "Hodge decompositions and computational electromagnetics,", Ph.D. thesis, 123, McGill University, Montreal, 1984. Google Scholar
14. Kotiuga, P. R., "An algorithm to make cuts for scalar potentials in tetrahedral meshes based on the finite element method," IEEE Trans. Magn., Vol. 25, 4129-4131, 1989.
doi:10.1109/20.42544 Google Scholar
15. Kotiuga, P. R., "Helicity functionals and metric invariance in three dimensions," IEEE Trans. Magn., Vol. 25, 2813-2815, 1989.
doi:10.1109/20.34293 Google Scholar
16. Kotiuga, P. R., "Analysis of finite-element matrices arising from discretizations of helicity functionals," J. Appl. Phys., Vol. 67, 5815-5817, 1990.
doi:10.1063/1.345973 Google Scholar
17. Kotiuga, P. R., "Topological duality in three-dimensional eddycurrent problems and its role in computer-aided problem formulation," J. Appl. Phys., Vol. 67, 4717-4719, 1990.
doi:10.1063/1.344812 Google Scholar
18. Kotiuga, P. R., "Essential arithmetic for evaluating three dimensional vector finite element interpolation schemes," IEEE Trans. Magn., Vol. 27, 5208-5210, 1991.
doi:10.1109/20.278789 Google Scholar
19. Kron, G., "Basic concepts of multidimensional space filters," AIEE Trans., Vol. 78, 554-561, 1959. Google Scholar
20. Maxwell, J. C., A Treatise on Electricity and Magnetism (1891), Chap. 1, Art. 18–22, Dover, New York, 1954.
21. Muller, W., "Analytic torsion and r-torsion of riemannian manifolds," Advances in Mathematics, Vol. 28, 233-305, 1978.
doi:10.1016/0001-8708(78)90116-0 Google Scholar
22. Munkres, J. R., Elements of Algebraic Topology, 377-380, Addison-Wesley, Reading, MA, 1984.
23. Rotman, J. J., An Introduction to Algebraic Topology, Springer- Verlag, NY, 1988.
doi:10.1007/978-1-4612-4576-6
24. Silvester, P. and R. Ferrari, Finite Elements for Electrical Engineers, 2nd Ed., Cambridge U. Press, NY, 1990.
25. Whitney, H., "On matrices of integers and combinatorial topology," Duke Math. J., Vol. 3, 35-45, 1937.
doi:10.1215/S0012-7094-37-00304-1 Google Scholar
26. Whitney, H., "r-Dimensional integration in n-space," Proc. of the Int. Congress of Mathematicians, Vol. 1, 1950. Google Scholar
27. Whitney, H., Geometric Integration Theory, Princeton University Press, Princeton, New Jersey, 1957.
doi:10.1515/9781400877577