Vol. 44
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Scattering of X-Waves from a Circular Disk Using a Time Domain Incremental Theory of Diffraction
By
, Vol. 44, 103-129, 2004
Abstract
The diffraction and scattering of a first-order ultrawideband TE X-wave by a perfectly conducting circular disk is investigated using an augmented time-domain incremental theory of diffraction. The analysis relies on a pulsed plane wave representation of the incident X-wave. The diffraction and scattering of each constituent pulsed plane wave component is calculated at the observation point. A subsequent azimuthal angular superposition yields the diffracted and scattered field due to the incident X-wave pulse. Making use of the localization and symmetry properties of the incident TE X-wave, a novel four-sensor correlated detection scheme is introduced which is particularly effective in detecting the edges of the scattering disk and has an exceptional resolving power.
Citation
"Scattering of X-Waves from a Circular Disk Using a Time Domain Incremental Theory of Diffraction," , Vol. 44, 103-129, 2004.
doi:10.2528/PIER03032002
References

1. Brittingham, J. N., "Focus wave modes in homogeneous Maxwell equations: Transverse electric mode," J. Appl. Phys., Vol. 54, 1179-1189, 1983.
doi:10.1063/1.332196        Google Scholar

2. Ziolkowski, R. W., "Exact solutions of the wave equation with complex source locations," J. Math. Phys., Vol. 26, 861-863, 1985.
doi:10.1063/1.526579        Google Scholar

3. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, 1989.
doi:10.1103/PhysRevA.39.2005        Google Scholar

4. Ziolkowski, R. W., "Properties of electromagnetic beams generated by ultra-wide bandwidth pulse driven arrays," IEEE Trans. Antennas and Prop., Vol. 40, 888-905, 1992.
doi:10.1109/8.163426        Google Scholar

5. Ziolkowski, R. W., D. Lewis, and B. Cook, "Evidence of localized wave transmission," Phys. Rev. Lett., Vol. 62, 147-150, 1989.
doi:10.1103/PhysRevLett.62.147        Google Scholar

6. Lu, J. and J. F. Greenleaf, "Nondiffracting X waves — Exact solutions to free-space scalar wave equation and their finite aperture realization," IEEE Trans. on Ultrason. Ferroelect. Freq. Contr., Vol. 39, 19-31, 1992.
doi:10.1109/58.166806        Google Scholar

7. Lu, J. Y. and J. F. Greenleaf, "Experimental verification of nondiffracting X waves," IEEE Trans. Ultrason. Ferroelec. Freq. Contr., Vol. 39, 441-446, 1992.
doi:10.1109/58.143178        Google Scholar

8. Saari, P. and K. Reivelt, "Evidence of X-shaped propagationinvariant localized light waves," Phys. Rev. lett., Vol. 79, 4135-4138, 1997.
doi:10.1103/PhysRevLett.79.4135        Google Scholar

9. Reivelt, K. and P. Saari, "Optical generation of focus wave modes," J. Opt. Soc. Am. A, Vol. 17, 1785-1790, 2000.        Google Scholar

10. Besieris, I. M., A. M. Shaarawi, and R. W. Ziolkowski, "A bidirectional traveling wave representation of exact solution of the scalar wave equation," J. Math. Phys., Vol. 30, 1254-1269, 1989.
doi:10.1063/1.528301        Google Scholar

11. Besieris, I., M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros, "Two fundamental representations of localized pulse solutions of the scalar wave equation," Progress in Electromagnetics Research, Vol. PIER 19, 1-48, 1998.
doi:10.2528/PIER97072900        Google Scholar

12. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, "Aperture realization of exact solution to homogenous-wave equations," J. Opt. Soc. Am. A, Vol. 10, 75-87, 1993.        Google Scholar

13. Shaarawi, A. M., R. W. Ziolkowski, and I. M. Besieris, "On the evanescent fields and the causality of the focus wave modes," J. Math. Phys., Vol. 36, 5565-5587, 1995.
doi:10.1063/1.531277        Google Scholar

14. Mugnai, D., A. Ranfagni, and R. Ruggeri, "Observation of superluminal behaviors in wave propagation," Phys. Rev. Lett., Vol. 84, 4830-4833, 2000.
doi:10.1103/PhysRevLett.84.4830        Google Scholar

15. Recami, E., "On localized X-shaped superluminal solutions to Maxwell's equations," Physica A, Vol. 252, 586-610, 1998.
doi:10.1016/S0378-4371(97)00686-9        Google Scholar

16. Attiya, A. M., "Transverse (TE) electromagnetic X-waves: Propagation, scattering, diffraction and generation problems," Ph.D. Thesis, No. 5, 2001.        Google Scholar

17. Attiya, A. M., E. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "Diffraction of a transverse electric (TE) X wave by conducting objects," Accepted for publication..        Google Scholar

18. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.

19. Rousseau, P. R. and P. H. Pathak, "Time-domain uniform geometrical theory of diffraction for a curved wedge," IEEE Trans. Antennas and Prop., Vol. 43, 1375-1382, 1995.
doi:10.1109/8.475925        Google Scholar

20. Capolino, F. and R. Tiberio, "A time-domain incremental theory of diffraction (TD-ITD) for a wedge," Proceedings of the International Conference on Electromagnetic in Advanced Application (ICEAA 01), 10-14, 2001.

21. Tiberio, R. and S. Maci, "An incremental theory of diffraction: scalar formulation," IEEE Trans. Antennas and Prop., Vol. 42, 600-611, 1994.
doi:10.1109/8.299558        Google Scholar

22. Tiberio, R., S. Maci, and A. Toccafondi, "An incremental theory of diffraction: Electromagnetic formulation," IEEE Trans. Antennas and Prop., Vol. 43, 87-96, 1995.
doi:10.1109/8.366356        Google Scholar

23. Maci, S., R. Tiberio, and A. Toccafondi, "Incremental diffraction coefficients for source and observation at finite distances from an edge," IEEE Trans. Antennas and Prop., Vol. 44, 593-599, 1996.
doi:10.1109/8.496244        Google Scholar

24. Fagerholm, J., A. Friberg, J. Huttunen, D. Morgan, and M. Salomaa, "Angular-spectrum representation of nondiffracting X waves," Physical Rev. E, Vol. 54, 4347-4352, 1996.
doi:10.1103/PhysRevE.54.4347        Google Scholar

25. Attiya, A. M., E. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "A time-domain incremental theory of diffraction: scattering of electromagnetic pulsed plane waves," submitted to the same journal..        Google Scholar

26. Attiya, A. M., E. A. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "Reflection and transmission of X-waves in the presence of planarly layered media: The pulsed plane wave representation," Progress in Electromagnetics Research, Vol. 30, 191-211, 2000.
doi:10.2528/PIER99090202        Google Scholar

27. Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and Radiating Systems, Prentice-Hall, 1974.

28. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 1994.