1. Brittingham, J. N., "Focus wave modes in homogeneous Maxwell equations: Transverse electric mode," J. Appl. Phys., Vol. 54, 1179-1189, 1983.
doi:10.1063/1.332196 Google Scholar
2. Ziolkowski, R. W., "Exact solutions of the wave equation with complex source locations," J. Math. Phys., Vol. 26, 861-863, 1985.
doi:10.1063/1.526579 Google Scholar
3. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, 1989.
doi:10.1103/PhysRevA.39.2005 Google Scholar
4. Ziolkowski, R. W., "Properties of electromagnetic beams generated by ultra-wide bandwidth pulse driven arrays," IEEE Trans. Antennas and Prop., Vol. 40, 888-905, 1992.
doi:10.1109/8.163426 Google Scholar
5. Ziolkowski, R. W., D. Lewis, and B. Cook, "Evidence of localized wave transmission," Phys. Rev. Lett., Vol. 62, 147-150, 1989.
doi:10.1103/PhysRevLett.62.147 Google Scholar
6. Lu, J. and J. F. Greenleaf, "Nondiffracting X waves — Exact solutions to free-space scalar wave equation and their finite aperture realization," IEEE Trans. on Ultrason. Ferroelect. Freq. Contr., Vol. 39, 19-31, 1992.
doi:10.1109/58.166806 Google Scholar
7. Lu, J. Y. and J. F. Greenleaf, "Experimental verification of nondiffracting X waves," IEEE Trans. Ultrason. Ferroelec. Freq. Contr., Vol. 39, 441-446, 1992.
doi:10.1109/58.143178 Google Scholar
8. Saari, P. and K. Reivelt, "Evidence of X-shaped propagationinvariant localized light waves," Phys. Rev. lett., Vol. 79, 4135-4138, 1997.
doi:10.1103/PhysRevLett.79.4135 Google Scholar
9. Reivelt, K. and P. Saari, "Optical generation of focus wave modes," J. Opt. Soc. Am. A, Vol. 17, 1785-1790, 2000. Google Scholar
10. Besieris, I. M., A. M. Shaarawi, and R. W. Ziolkowski, "A bidirectional traveling wave representation of exact solution of the scalar wave equation," J. Math. Phys., Vol. 30, 1254-1269, 1989.
doi:10.1063/1.528301 Google Scholar
11. Besieris, I., M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros, "Two fundamental representations of localized pulse solutions of the scalar wave equation," Progress in Electromagnetics Research, Vol. PIER 19, 1-48, 1998.
doi:10.2528/PIER97072900 Google Scholar
12. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, "Aperture realization of exact solution to homogenous-wave equations," J. Opt. Soc. Am. A, Vol. 10, 75-87, 1993. Google Scholar
13. Shaarawi, A. M., R. W. Ziolkowski, and I. M. Besieris, "On the evanescent fields and the causality of the focus wave modes," J. Math. Phys., Vol. 36, 5565-5587, 1995.
doi:10.1063/1.531277 Google Scholar
14. Mugnai, D., A. Ranfagni, and R. Ruggeri, "Observation of superluminal behaviors in wave propagation," Phys. Rev. Lett., Vol. 84, 4830-4833, 2000.
doi:10.1103/PhysRevLett.84.4830 Google Scholar
15. Recami, E., "On localized X-shaped superluminal solutions to Maxwell's equations," Physica A, Vol. 252, 586-610, 1998.
doi:10.1016/S0378-4371(97)00686-9 Google Scholar
16. Attiya, A. M., "Transverse (TE) electromagnetic X-waves: Propagation, scattering, diffraction and generation problems," Ph.D. Thesis, No. 5, 2001. Google Scholar
17. Attiya, A. M., E. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "Diffraction of a transverse electric (TE) X wave by conducting objects," Accepted for publication.. Google Scholar
18. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
19. Rousseau, P. R. and P. H. Pathak, "Time-domain uniform geometrical theory of diffraction for a curved wedge," IEEE Trans. Antennas and Prop., Vol. 43, 1375-1382, 1995.
doi:10.1109/8.475925 Google Scholar
20. Capolino, F. and R. Tiberio, "A time-domain incremental theory of diffraction (TD-ITD) for a wedge," Proceedings of the International Conference on Electromagnetic in Advanced Application (ICEAA 01), 10-14, 2001.
21. Tiberio, R. and S. Maci, "An incremental theory of diffraction: scalar formulation," IEEE Trans. Antennas and Prop., Vol. 42, 600-611, 1994.
doi:10.1109/8.299558 Google Scholar
22. Tiberio, R., S. Maci, and A. Toccafondi, "An incremental theory of diffraction: Electromagnetic formulation," IEEE Trans. Antennas and Prop., Vol. 43, 87-96, 1995.
doi:10.1109/8.366356 Google Scholar
23. Maci, S., R. Tiberio, and A. Toccafondi, "Incremental diffraction coefficients for source and observation at finite distances from an edge," IEEE Trans. Antennas and Prop., Vol. 44, 593-599, 1996.
doi:10.1109/8.496244 Google Scholar
24. Fagerholm, J., A. Friberg, J. Huttunen, D. Morgan, and M. Salomaa, "Angular-spectrum representation of nondiffracting X waves," Physical Rev. E, Vol. 54, 4347-4352, 1996.
doi:10.1103/PhysRevE.54.4347 Google Scholar
25. Attiya, A. M., E. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "A time-domain incremental theory of diffraction: scattering of electromagnetic pulsed plane waves," submitted to the same journal.. Google Scholar
26. Attiya, A. M., E. A. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "Reflection and transmission of X-waves in the presence of planarly layered media: The pulsed plane wave representation," Progress in Electromagnetics Research, Vol. 30, 191-211, 2000.
doi:10.2528/PIER99090202 Google Scholar
27. Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and Radiating Systems, Prentice-Hall, 1974.
28. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 1994.