1. Fang, D. G.J. J. Yang, and G. Y. Delisle, "Discrete image theory for horizontal electric dipole in a multilayer medium," Proc. Inst. Elect. Eng. H, Vol. 135, No. 10, 297-303, 1988.
2. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closedform spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 558-592, 1991. Google Scholar
3. Yang, J. J., Y. L. Chow, G. E. Howard, and D. G. Fang, "Complex images of an electric dipole in homogeneous and layered dielectrics between two grounded planes," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 3, 595-600, 1992.
doi:10.1109/22.121743 Google Scholar
4. Tai, C. T., Dyadic Green's Functions in Electromagnetic Theory, 2nd ed., 1994.
5. Kipp, R. A. and C. H. Chan, "Complex image method for sources in bounded regions of multilayer structures," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 5, 860-865, 1994.
doi:10.1109/22.293536 Google Scholar
6. Aksun, M. I. and R. Mittra, "Derivation of closed-form spatial Green's functions for a general microstrip geometry," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 11, 2055-2062, 1992.
doi:10.1109/22.168763 Google Scholar
7. Dural, G. and M. I. Aksun, "Closed-form Green's functions for general sources and stratified media," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 7, 1545-1552, 1995.
doi:10.1109/22.392913 Google Scholar
8. Aksun, M. I., "A robust approach for the derivation of closed-form spatial Green's functions," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 5, 651-658, 1996.
doi:10.1109/22.493917 Google Scholar
9. Ling, F. and J. M. Jin, "Discrete complex image method for Green's functions of general multilayer media," IEEE Microwave Guided Wave Lett., Vol. 10, No. 10, 400-402, 2000.
doi:10.1109/75.877225 Google Scholar
10. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.
11. Li, L. W., M. S. Leong, T. S. Yeo, and P. S. Kooi, "Electromagnetic dyadic Green's functions in spectral domain for multilayered cylinders," J. Electromagn. Waves and Appl., Vol. 14, No. 7, 961-986, 2000. Google Scholar
12. Donohoe, J. P., "Scattering from buried bodies of revolution using dyadic Green's functions in cylindrical harmonics," IEEE Antennas Propagat. Soc. Int. Symp. Dig., Vol. 4, No. 6, 1922-1925, 1998. Google Scholar
13. Thiel, M. and A. Dreher, "Dyadic Green's function of multilayer cylindrical closed and sector structures for waveguide, microstripantenna and network analysis," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 11, 2576-2579, 2002.
doi:10.1109/TMTT.2002.804637 Google Scholar
14. Tokgöz, C. and G. Dural, "Closed-form Green's functions for cylindrically stratified media," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 1, 40-49, 2000.
doi:10.1109/22.817470 Google Scholar
15. Sun, J., C. F. Wang, L. W. Li, and M. S. Leong, "A complete set of spatial-domain dyadic Green's function components for cylindrically stratified media in fast computational form," J. Electromagn. Waves and Appl., Vol. 16, No. 11, 1491-1509, 2002. Google Scholar
16. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 229-234, 1989.
doi:10.1109/8.18710 Google Scholar
17. Erturk, V. B. and R. G. Rojas, "Efficient computation of surface fields excited on a dielectric-coated circular cylinder," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1507-1516, 2000.
doi:10.1109/8.899666 Google Scholar
18. Svezhentsev, A. and G. Vandenbosch, "Model for the analysis of microstrip cylindrical antennas: efficient calculation of the necessary Green's functions," 11th Int. Conf. Antennas Propagat., Vol. 2, No. 4, 615-618, 2001.
doi:10.1049/cp:20010362 Google Scholar
19. Hall, R. C., C. H. Thng, and D. C. Chang, "Mixed potential Green's functions for cylindrical microstrip structures," IEEE Antennas Prapagat. Soc. Int. Symp., Vol. 4, 1776-1779, 1995. Google Scholar
20. Chen, J., A. A. Kishk, and A. W. Glission, "Application of a new mpie formulation to the analysis of a dielectric resonator embedded in a multilayered medium couple to a microstrip circuit," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 2, 263-279, 2001.
doi:10.1109/22.903086 Google Scholar
21. Shank, D., "Non-linear transformation of divergent and slowly convergent sequences," J. Math. Phy., Vol. 34, 1-42, 1955. Google Scholar