1. Petit, R., "Diffraction d'une onde plane par un reseau metallique," Rev. Opt., Vol. 45, 353-370, 1966. Google Scholar
2. Vincent, P., "Differential methods," Electromagnetic Theory of Gratings, Vol. 22 of Topic in Current Physics, 101-121, 1980. Google Scholar
3. Peng, S. T., T. Tamir, and H. L. Bertoni, "Theory of periodic dielectric waveguides," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 1123-133, 1123-133, 1975. Google Scholar
4. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., Vol. 71, No. 7, 811-818, 1981. Google Scholar
5. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of dielectric surface-relief gratings," J. Opt. Soc. Am., Vol. 72, No. 10, 1385-1392, 1982. Google Scholar
6. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, No. 5, 1024-1035, 1996. Google Scholar
7. Montiel, F., M. Neviere, and P. Peyrot, "Waveguide confinement of Cerenkov second-harmonic generation through a graded-index grating coupler: Electromagnetic optimization," J. Mod. Opt., Vol. 45, No. 10, 2169-2186, 1998.
doi:10.1080/095003498150646 Google Scholar
8. Watanabe, K., "Numerical integration schemes used on the differential theory for anisotropic gratings," J. Opt. Soc. Am. A, Vol. 19, No. 11, 2245-2252, 2002. Google Scholar
9. Neviere, M., P. Vincent, and R. Petit, "Sur la theorie du reseau conducteur et ses applications `a l'optique," Nouv. Rev. Opt., Vol. 5, No. 2, 65-77, 1974.
doi:10.1088/0335-7368/5/2/301 Google Scholar
10. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A, Vol. 13, No. 9, 1870-1876, 1996. Google Scholar
11. Li, L., "Reformulation of the Fourier modal method for surfacerelief grating made with anisotropic materials," J. Mod. Opt., Vol. 45, No. 71313-1334, 71313-1334, 1998. Google Scholar
12. Popov, E., M. Neviere, B. Gralak, and G. Tayeb, "Staircase approximation validity for arbitrary shaped gratings," J. Opt. Soc. Am. A, Vol. 19, No. 1, 33-42, 2002. Google Scholar
13. Popov, E. and M. Neviere, "Grating theory: New equations in Fourier space leading to fast converging results for TM polarization," J. Opt. Soc. Am. A, Vol. 17, No. 10, 1773-1784, 2000. Google Scholar
14. Watanabe, K., R. Petit, and M. Neviere, "Differential theory of gratings made of anisotropic materials," J. Opt. Soc. Am. A, Vol. 19, No. 2, 325-334, 2002. Google Scholar
15. Watanabe, K. and K. Yasumoto, "Reformulation of differential method for anisotropic gratings in conical mounting," Proc. 8th Int. Symp. Microwave and Opt. Technol., No. 6, 443-446, 2001.
16. Popov, E. and M. Neviere, "Maxwell equations in Fourier space: Fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," J. Opt. Soc. Am. A, Vol. 18, No. 11, 2886-2894, 2001. Google Scholar
17. Watanabe, K., "Fast converging formulation of the differential theory for cylindrical rod gratings made of anisotropic materials," Turkish J. Telecommunications. Google Scholar
18. Watanabe, K., "Fast converging formulation of differential theory for non-smooth gratings made of anisotropic materials," Radio Sci., Vol. 38, No. 2, 2003.
doi:10.1029/2001RS002562 Google Scholar
19. Li, L., "Multilayer-coated diffraction gratings: differential method of Chandezon et al. revisited," J. Opt. Soc. Am. A, Vol. 11, No. 11, 2816-2828, 1994. Google Scholar
20. Tayeb, G., "Contribution a l'etude de la diffraction des ondes electromagnetiques par des reseaux. Reflexions sur les methodes existantes et sur leur extension aux milieux anisotropes," Ph.D. dissertation, No. 90/Aix 3/0065, 1990. Google Scholar