Vol. 74
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-05-24
Reconstruction of 2D PEC Targets Using Limited Scattered Information
By
Progress In Electromagnetics Research, Vol. 74, 291-307, 2007
Abstract
An efficient method is proposed in this paper to reconstruct the shape of a two-dimensional perfectly electrically conducting (PEC) target using limited scattered information. Based on the physical optics approximation, a Fourier transform relation has been obtained between the PEC target and the scattered fields. In theory, all scattered-field data are required for the reconstruction in the whole angle range (from 0 to 2π) and in the whole frequency range (from 0 to ∞). However, such data are impossible in practical applications. In this paper, we have discussed the influence of limited frequencies and limited incident angles on the imaging, where a Pade interpolation technique has been developed to obtain the scattered information in the whole angle range from limited-angle information. In order to overcome the ill-posed problem in the interpolation, the Tikhonov regularization has been used. Reconstruction examples are given to validate the efficiency of the proposed approach.
Citation
Jing Wu Tie-Jun Cui , "Reconstruction of 2D PEC Targets Using Limited Scattered Information," Progress In Electromagnetics Research, Vol. 74, 291-307, 2007.
doi:10.2528/PIER07042603
http://www.jpier.org/PIER/pier.php?paper=07042603
References

1. Lewis, R. M., "Physical optics inverse diffraction," IEEE Trans. Ant. Propagat., Vol. 17, No. 3, 308-314, 1969.
doi:10.1109/TAP.1969.1139417

2. Das, Y., "On radar target shape estimation using algorithms for reconstruction from projections," IEEE Trans. Ant. Propagat., Vol. 26, No. 2, 274-279, 1978.
doi:10.1109/TAP.1978.1141825

3. Bennett, C. L., "Time domain inverse scattering," IEEE Trans. Ant. Propagat., Vol. 29, No. 2, 213-219, 1981.
doi:10.1109/TAP.1981.1142556

4. Bojarski, N. N., "A survey of the physical optics inverse scattering identity," IEEE Trans. Ant. Propagat., Vol. 30, 980-989, 1982.
doi:10.1109/TAP.1982.1142890

5. Boerner, W. M., C. M. Ho, and B. Y. Foo, "Use of Radon's projection theory in electromagnetic inverse scattering," IEEE Trans. Ant. Propagat., Vol. 2, No. 3, 336-341, 1981.
doi:10.1109/TAP.1981.1142581

6. Rothwell, E. J., K. M. Chen, D. P. Nyquist, and J. E. Ross, "Time-domain imaging of airborne targets using ultra-wideband or short-pulse radar," IEEE Trans. Ant. Propagat., Vol. 43, No. 3, 327-329, 1995.
doi:10.1109/8.372006

7. Dai, Y. C., E. J. Rothwell, K. M. Chen, and D. P. Nyquist, "Time-domain imaging of radar targets using algorithms for reconstruction from projections," IEEE Trans. Ant. Propagat., Vol. 45, No. 8, 1227-1235, 1997.
doi:10.1109/8.611241

8. Chan, C. K. and N. H. Farhat, "Frequency swept tomographic imaging of three-dimensional perfectly conducting objects," IEEE Trans. Ant. Propagat., Vol. 29, No. 3, 312-319, 1981.
doi:10.1109/TAP.1981.1142571

9. Young, J. D., "Radar imaging from ramp response signatures," IEEE Trans. Ant. Propagat., Vol. 24, No. 5, 276-282, 1976.
doi:10.1109/TAP.1976.1141346

10. Dural, G. and D. L. Moffatt, "SARimaging to identify basic scattering mechanisms," IEEE Trans. Ant. Propagat., Vol. 42, No. 1, 99-110, 1994.
doi:10.1109/8.272307

11. Cui, T. J. and W. C. Chew, "Study of resolution and super resolution in electromagnetic imaging for half-space problems," IEEE Trans. Ant. Propagat., Vol. 52, No. 6, 1398-1411, 2004.
doi:10.1109/TAP.2004.829847

12. Belkebir, K., A. Baussard, and D. Premel, "Edge-preserving regularization scheme applied to modified gradient method to reconstruct two-dimensional targets from data laboratorycontrolled," Progress In Electromagnetics Research, Vol. 54, 1-17, 2005.
doi:10.2528/PIER04073003

13. Persson, K. and M. Gustafsson, "Reconstruction of equivalent currents using a near-field data transformation — with radome," Applications Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
doi:10.2528/PIER04111602

14. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

15. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

16. Thomas, V., J. Yohannan, A. Lonappan, G. Bindu, and K. T. Mathew, "Localization of the investigation domain in electromagnetic imaging of buried 2-D dielectric pipelines with circular cross section," Progress In Electromagnetics Research, Vol. 61, 111-131, 2006.
doi:10.2528/PIER05110801

17. Cockrel, C. R. and F. B. Beck, "Asymptotic waveform evaluation (AWE) technique for frequency domain electromagnetic analysis," NASA Technical Memorandum 110292, No. 11, 1996.

18. Tikhonov, A. N. and V. Y. Arsenin, Solution of Ill-Posed Problems, V. H. Winston and Sons, Washington D.C., 1977.

19. Cui, T. J., Y. Qin, G. L. Wang, and W. C. Chew, "Low-frequency detection of 2D buried objects using high-order extended Born approximations," Inverse Problems, Vol. 20, 41, 2004.
doi:10.1088/0266-5611/20/6/S04