Vol. 75
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-06-22
A New Method for Classification and Identification of Complex Fiber Bragg Grating Using the Genetic Algorithm
By
, Vol. 75, 329-356, 2007
Abstract
In this paper a novel intelligent method to identify an unknown medium (type of apodization and chirping) is developed. Our consideration is concentrated on complex fiber Bragg Gratings. For realization of the idea the Genetic Algorithms (GAs) is used. So, GAs is used to solve inverse scattering problem for reconstruction of nonuniform or complex fiber Brag gratings. In this method, the reflection coefficient measured in practice is inserted to a suitable algorithm. According to the proposed method, first medium discrimination is performed between predefined large classes of mediums and then the whole and necessary parameters for reconstruction of the medium are extracted. Full numerical method is used for compare of the results obtained from the presented algorithm. Our simulation shows good agreement between them. So, a novel method for identification and discrimination of optical mediums especially complex Bragg Gratings is presented. Finally the presented method can be used to identify optical mediums and complex Bragg Gratings systems.
Citation
Ali Rostami, and Arash Yazdanpanah-Goharriz, "A New Method for Classification and Identification of Complex Fiber Bragg Grating Using the Genetic Algorithm," , Vol. 75, 329-356, 2007.
doi:10.2528/PIER07061802
References

1. Matsuhara, M., K. O. Hill, and A. Watanabe, "Optical-waveguide filters: Synthesis," J. Opt. Soc. Am., Vol. 65, 804-809, 1975.        Google Scholar

2. Peral, E., J. Capmany, and J. Marti, "Iterative solution to the Gel'fand-Levitan-Marchenko coupled equations and applications to synthesis of fiber gratings," IEEE J. Quantum Electron., Vol. 32, 2078-2084, 1996.
doi:10.1109/3.544753        Google Scholar

3. Feced, R., M. N. Zzervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of non uniform fiber Bragg gratings," IEEE J. Quantum Electronics, Vol. 35, 1105-1115, 1999.
doi:10.1109/3.777209        Google Scholar

4. Winick, K. A. and J. E. Roman, "Design of corrugated waveguide filters by Fourier Transform techniques," IEEE J. Quantum Electronics, Vol. 26, 1918-1929, 1990.
doi:10.1109/3.62111        Google Scholar

5. Roberts, P. and G. Town, "Design of microwave filters by inverse scattering," IEEE Transaction on Microwave Theory and Techniques, Vol. 43, 739-743, 1995.
doi:10.1109/22.375219        Google Scholar

6. Loh, W. H., M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, "Complex grating structures with uniform phase masks based on the moving fiber-scanning technique," Opt. Lett., Vol. 20, No. 20, 2051-2053, 1995.        Google Scholar

7. Asseh, A., H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol., Vol. 15, No. 8, 1419-1423, 1997.
doi:10.1109/50.618372        Google Scholar

8. Song, G. H. and S. Y. Shin, "Design of corrugated waveguide filters by the Gel'fand-Levitan-Marchenko inverse-scattering method," J. Opt. Soc. Am. A., Vol. 2, 1985.        Google Scholar

9. Dobrowolski, J. A. and D. Lowe, "Optical thin film synthesis program based on the use of Fourier transforms," Appl. Opt., Vol. 17, No. 19, 3039-3050, 1978.        Google Scholar

10. Bovard, B. G., "Fourier transform technique applied to quarter wave optical coatings," Appl. Opt., Vol. 27, No. 15, 3062-3063, 1988.        Google Scholar

11. Peral, E., J. Capmany, and J. Marti, "Design of fiber grating dispersion compensators using a novel iterative solution to the Gel'fand-Levitan-Marchenko coupled equations," Electron. Lett., Vol. 32, No. 10, 918-919, 1996.
doi:10.1049/el:19960596        Google Scholar

12. Skaar, J., B. Sahlgren, P. Y. Fonjallaz, H. Storoy, and R. Stubbe, "High reflectivity fiber-optic bandpass filter designed by use of the iterative solution to the Gel'fand-Levitan-Marchenko equations," Opt. Lett., Vol. 23, No. 12, 933-935, 1998.        Google Scholar

13. Frangos, P. V.D. J. Frantzeskakis, and C. N. Capsalis, "Pulse propagation in a nonlinear optical fiber of parabolic index profile by direct numerical solution of the Gel'fand-Levitan integral equations," Proc. Inst. Elect. Eng., Vol. 140, No. 2, 141-149, 1993.

14. Bruckstein, A. M., B. C. Levy, and T. Kailath, "Differential methods in inverse scattering," SIAM J. Appl. Math., Vol. 45, No. 2, 312-335, 1995.
doi:10.1137/0145017        Google Scholar

15. Bruckstein, A. M. and T. Kailath, "Inverse scattering for discrete transmission-line models," SIAM Rev., Vol. 29, No. 3, 359-389, 1987.
doi:10.1137/1029075        Google Scholar

16. Bube, K. P. and R. Burridge, "The one-dimensional inverse problem of reflection seismology," SIAM Rev., Vol. 25, No. 4, 497-559, 1983.
doi:10.1137/1025122        Google Scholar

17. Bube, K. P., "Convergence of difference methods for onedimensional inverse problems," IEEE Trans. Geosci. Remote Sensing, Vol. 22, No. 11, 674-682, 1984.        Google Scholar

18. Attiya, A. M., A. A. Kishk, and A. W. Glisson, "Analysis of two-dimensional magneto-dielectric grating slab," Progress In Electromagnetics Research, Vol. 74, 195-216, 2007.
doi:10.2528/PIER07042201        Google Scholar

19. Suyama, T. and Y. Okuno, "Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement," Progress In Electromagnetics Research, Vol. 72, 91-103, 2007.
doi:10.2528/PIER07030301        Google Scholar

20. Khalaj-Amirhosseini, M., "Equivalent circuit model for analysis of inhomogeneous gratings," Progress In Electromagnetics Research, Vol. 69, 21-34, 2007.
doi:10.2528/PIER06100501        Google Scholar

21. Kusayakin, O. P., P. N. Melezhik, A. Y. Poyedinchuk, and T. Stepanovich, "Absorbing properties of a negative permittivity layer placed on a reflecting grating," Progress In Electromagnetics Research, Vol. 64, 135-148, 2006.
doi:10.2528/PIER06061601        Google Scholar

22. Ohtsu, M., Y. Okuno, A. Matsushima, and T. Suyama, "A combination of up-and down-going floquet modal functions used to describe the field inside grooves of a deep grating," Progress In Electromagnetics Research, Vol. 64, 293-316, 2006.
doi:10.2528/PIER06071401        Google Scholar

23. Brovenko, A., P. N. Melezhik, A. Y. Poyedinchuk, and N. P. Yashina, "Surface resonances of metal stripe grating on the plane boundary of metamaterial," Progress In Electromagnetics Research, Vol. 63, 209-222, 2006.
doi:10.2528/PIER06052401        Google Scholar

24. Khalaj-Amirhosseini, M., "Scattering of inhomogeneous twodimensional periodic dielectric gratings," Progress In Electromagnetics Research, Vol. 60, 165-177, 2006.
doi:10.2528/PIER05112601        Google Scholar

25. Attiya, A. M. and A. A. Kishk, "Modal analysis of a twodimensional dielectric grating slab excited by an obliquely incident plane wave," Progress In Electromagnetics Research, Vol. 60, 221-243, 2006.
doi:10.2528/PIER05110602        Google Scholar

26. Poyedinchuk, A. Y., Y. A. Tuchkin, P. Yashinan, J. Chandezon, and G. Granet, "C-method: Several aspects of spectral theory of gratings," Progress In Electromagnetics Research, Vol. 59, 113-149, 2006.
doi:10.2528/PIER05050901        Google Scholar

27. Ohki, M., K. Sato, M. Matsumoto, and S. Kozaki, "T-matrix analysis of electromagnetic wave diffraction from a dielectric coated Fourier grating," Progress In Electromagnetics Research, Vol. 53, 91-108, 2005.
doi:10.2528/PIER04083101        Google Scholar

28. Skaar J. and K. Risvik "A genetic algorithm for the inverse problem in synthesis of fiber gratings," J. Lightwave Technol., Vol. 161928-1932, 161928-1932, 1998.        Google Scholar

29. Cormier, G., R. Boudreau, and S. Theriault, "Real-coded genetic algorithm for Bragg grating parameter synthesis," J. Opt. Soc. Am. B, Vol. 181771-1776, 181771-1776, 2001.        Google Scholar

30. Meng, Z., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.
doi:10.2528/PIER07031506        Google Scholar

31. Riabi, M. L., R. Thabet, and M. Belmeguenai, "Rigorous design and efficient optimizattion of quarter-wave transformers in metallic circular waveguides using the mode-matching method and the genetic algorithm," Progress In Electromagnetics Research, Vol. 68, 15-33, 2007.
doi:10.2528/PIER06072103        Google Scholar

32. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301        Google Scholar

33. Mitilineos, S. A. and C. A. Papagianni, "Design of switched beam planar arrays using the method of genetic algorithms," Progress In Electromagnetics Research, Vol. 46, 105-126, 2004.
doi:10.2528/PIER03080802        Google Scholar

34. Rodriguez, J. A., F. Ares, H. Palacios, and J. Vassal'lo, "Finding defective elements in planar arrays using genetic algorithms," Progress In Electromagnetics Research, Vol. 29, 25-37, 2000.
doi:10.2528/PIER00011401        Google Scholar

35. Othonos, A. and K. Kalli, Fibre Bragg Gratings: Fundamentals and applications in telecommunications and sensing, Artech House, 1999.

36. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, 542, 1983.

37. Erdogan, T., "Fibre grating spectra," Journal of Lightwave Technology, Vol. 15, No. 8, 1277-1294, 1997.
doi:10.1109/50.618322        Google Scholar

38. Chen, L. R., S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, "Ultrashort pulse reflection from fiber gratings: a numerical investigation," Journal of Lightwave Technology, Vol. 15, No. 8, 1503-1512, 1997.
doi:10.1109/50.618383        Google Scholar

39. Holland, J. H., Adaptation in Natural and Artificial Systems, 2nd edition, 1992.

40. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, 1989.

41. Spears, W. M.K. A. De Jong, T. Baeck, and P. Bradzil, "An overview of evolutionary computation," Proceedings of European Conference on Machine Learning, Vol. 667, 442-459, 1993.

42. Baeck, T., F. Hoffmeister, and H. P. Schwefel, "An overview of evolutionarv algorithms for parameter optimization," J. Evol. Comput., Vol. 1, 1-24, 1993.        Google Scholar

43. Koza, J. R., Genetic Programming: On the programming of computers by means of natural selection, MIT, 1992.

44. Horn, J.R. Belew, and L. Booker, "Finite Markovc hain analysis of a genetic algorithm with niching," Proceedings of the 4th International Conference on Genetic Algorithms, 110-117, 1993.