1. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620 Google Scholar
2. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585 Google Scholar
3. Cheng, X., H. Chen, L. Ran, B.-I. Wu, T. M. Grzegorczyk, and J. A. Kong, "A bianisotropic left-handed metamaterials compose of s-ring resonator," PIERS Online, Vol. 3, No. 5, 593-598, 2007.
doi:10.2529/PIERS060907015601 Google Scholar
4. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and fractional chiro-waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1119-1129, 2007. Google Scholar
5. Panin, S. B., P. D. Smith, and A. Y. Poyedinchuk, "Elliptical to linear polarization transformation by a grating on a chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1885-1899, 2007. Google Scholar
6. Nair, A. and P. K. Choudhury, "On the analysis of field patterns in chirofibers," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2277-2286, 2007.
doi:10.1163/156939307783134470 Google Scholar
7. Engheta, N. and M. W. Kowarz, "Antenna radiation in the presence of a chiral sphere," J. Appl. Phys., Vol. 67, No. 2, 639-647, 1990.
doi:10.1063/1.345766 Google Scholar
8. Li, L.-W., M.-S. Leong, P.-N. Jiao, and W.-X. Zhang, "Analysis of a passive circular loop antenna radiating in the presence of a layered chiral sphere using method of moments," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 11, 1593-1611, 2002.
doi:10.1163/156939302X01010 Google Scholar
9. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. Antennas Propagat., Vol. 38, No. 1, 90-98, January 1990.
doi:10.1109/8.43593 Google Scholar
10. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electronic Letters, Vol. 29, No. 12, 1048-1049, June 1993.
doi:10.1049/el:19930699 Google Scholar
11. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects," Appl. Opt., Vol. 24, No. 23, 4146-4154, December 1985. Google Scholar
12. Kluskens, M. S. and E. H. Newman, "Scattering by a multilayer chiral cylinder," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 91-96, January 1991.
doi:10.1109/8.64441 Google Scholar
13. Al-Kanhal, M. A. and E. Arvas, "Electromagnetic scattering from a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 44, No. 7, 1041-1048, July 1996.
doi:10.1109/8.504313 Google Scholar
14. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propagat., Vol. 51, No. 5, 1077-1084, May 2003.
doi:10.1109/TAP.2003.811501 Google Scholar
15. Khatir, B. N., M. Al-Kanhal, and A. Sebak, "Electromagnetic wave scattering by elliptic chiral cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1377-1390, 2006.
doi:10.1163/156939306779276866 Google Scholar
16. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method ," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104 Google Scholar
17. Mei, C., M. Hasanovic, J. K. Lee, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional inhomogeneous bianisotropic body," PIERS Online, Vol. 3, No. 5, 680-684, 2007.
doi:10.2529/PIERS061005231254 Google Scholar
18. Zhao, J. X., "Numerical and analytical formulizations of the extended Mie theory for solving the sphere scattering problem," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 967-983, 2006.
doi:10.1163/156939306776149815 Google Scholar
19. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor sphere," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1569-1576, 2006.
doi:10.1163/156939306779292390 Google Scholar
20. Chen, X., "Time-reversal operator for a small sphere in electromagnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1219-1230, 2007. Google Scholar
21. Li, Y.-L., J.-Y. Huang, and M.-J. Wang, "Investigation of electromagnetic interaction between a spherical target and a conducting plane," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1703-1715, 2007. Google Scholar
22. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906 Google Scholar
23. Kukharchik, P. D., V. M. Serdyuk, and J. A. Titovitsky, "Diffraction of hybrid modes in a cylindrical cavity resonator by a transverse circular slot with a plane anisotropic dielectric layer," Progress In Electromagnetics Research B, Vol. 3, 73-94, 2008.
doi:10.2528/PIERB07112502 Google Scholar
24. Li, Y.-L., J.-Y. Huang, M.-J. Wang, and J. Zhang, "Scattering field for the ellipsoidal targets irradiated by an electromagnetic wave with arbitrary polarizing and propagating direction," Progress In Electromagnetics Research Letters, Vol. 1, 221-235, 2008.
doi:10.2528/PIERL07120610 Google Scholar
25. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic resonances and Q factor of a chiral sphere," IEEE Trans. Antennas Propagat., Vol. 52, No. 1, 213-219, January 2004.
doi:10.1109/TAP.2003.822451 Google Scholar
26. Rao, T. C. K., "Resonant frequency and Q-factor of a cylindrical cavity containing a chiral medium," Int. J. Electronics, Vol. 73, No. 1, 183-191, 1992.
doi:10.1080/00207219208925657 Google Scholar
27. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Eigenmodes of a chiral sphere with a perfectly conducting coating," J. Phys. D: Appl. Phys., Vol. 22, 825-828, 1989.
doi:10.1088/0022-3727/22/6/020 Google Scholar
28. Hui, H. T. and E. K. N. Yung, "The quality factor of a spherical cavity filled with a chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 41-52, 2001.
doi:10.1163/156939301X00616 Google Scholar
29. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Wave in Chiral and Bi-Isotropic Media, Artech House, 1994.
30. Worasawate, D., Electromagnetic scattering from an arbitrarily shaped three-dimensional chiral body, Ph.D. Dissertation, Syracuse University, 2002.
31. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, 1961.
32. Lai, S.-L. and W.-G. Lin, "A five mode single spherical cavity microwave filter," IEEE Microwave Theory and Techniques Society International Microwave Symposium Digest 1992, Vol. 2, 909-912, June 1–5 1992. Google Scholar