Vol. 82
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-03-01
Electromagnetic Resonances and Field Distributions of a Chiral Filled Spherical Perfectly Conducting Cavity
By
Progress In Electromagnetics Research, Vol. 82, 77-94, 2008
Abstract
The electromagnetic resonances of a spherical cavity, with a perfectly conducting wall and filled with a homogeneous isotropic chiral medium, is studied using the spherical vector wavefunctions. The characteristic equation and the expressions for the field components, when chirality reaches its maximum value, are derived. The characteristic equation is obtained by imposing the boundary condition on the wall of the spherical cavity. The characteristic equation is solved numerically and reported for the first five modes. These modes are hybrid modes. They are classes as either hybrid electric (HE) modes or hybrid magnetic (HM) modes. The explicit expressions for the field components of the HE and HM modes are given, and the field distributions of a few modes are shown. The chirality is observed to have significant effects on the resonances and the field distributions of a chiral filled spherical perfectly conducting cavity. The results show interesting properties of the cavity, which could be applied to new applications.
Citation
Denchai Worasawate, Muhammad Shahzad, and Monai Krairiksh, "Electromagnetic Resonances and Field Distributions of a Chiral Filled Spherical Perfectly Conducting Cavity," Progress In Electromagnetics Research, Vol. 82, 77-94, 2008.
doi:10.2528/PIER08013008
References

1. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

2. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585

3. Cheng, X., H. Chen, L. Ran, B.-I. Wu, T. M. Grzegorczyk, and J. A. Kong, "A bianisotropic left-handed metamaterials compose of s-ring resonator," PIERS Online, Vol. 3, No. 5, 593-598, 2007.
doi:10.2529/PIERS060907015601

4. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and fractional chiro-waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1119-1129, 2007.

5. Panin, S. B., P. D. Smith, and A. Y. Poyedinchuk, "Elliptical to linear polarization transformation by a grating on a chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1885-1899, 2007.

6. Nair, A. and P. K. Choudhury, "On the analysis of field patterns in chirofibers," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2277-2286, 2007.
doi:10.1163/156939307783134470

7. Engheta, N. and M. W. Kowarz, "Antenna radiation in the presence of a chiral sphere," J. Appl. Phys., Vol. 67, No. 2, 639-647, 1990.
doi:10.1063/1.345766

8. Li, L.-W., M.-S. Leong, P.-N. Jiao, and W.-X. Zhang, "Analysis of a passive circular loop antenna radiating in the presence of a layered chiral sphere using method of moments," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 11, 1593-1611, 2002.
doi:10.1163/156939302X01010

9. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. Antennas Propagat., Vol. 38, No. 1, 90-98, January 1990.
doi:10.1109/8.43593

10. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electronic Letters, Vol. 29, No. 12, 1048-1049, June 1993.
doi:10.1049/el:19930699

11. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects," Appl. Opt., Vol. 24, No. 23, 4146-4154, December 1985.

12. Kluskens, M. S. and E. H. Newman, "Scattering by a multilayer chiral cylinder," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 91-96, January 1991.
doi:10.1109/8.64441

13. Al-Kanhal, M. A. and E. Arvas, "Electromagnetic scattering from a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 44, No. 7, 1041-1048, July 1996.
doi:10.1109/8.504313

14. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propagat., Vol. 51, No. 5, 1077-1084, May 2003.
doi:10.1109/TAP.2003.811501

15. Khatir, B. N., M. Al-Kanhal, and A. Sebak, "Electromagnetic wave scattering by elliptic chiral cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1377-1390, 2006.
doi:10.1163/156939306779276866

16. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method ," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104

17. Mei, C., M. Hasanovic, J. K. Lee, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional inhomogeneous bianisotropic body," PIERS Online, Vol. 3, No. 5, 680-684, 2007.
doi:10.2529/PIERS061005231254

18. Zhao, J. X., "Numerical and analytical formulizations of the extended Mie theory for solving the sphere scattering problem," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 967-983, 2006.
doi:10.1163/156939306776149815

19. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor sphere," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1569-1576, 2006.
doi:10.1163/156939306779292390

20. Chen, X., "Time-reversal operator for a small sphere in electromagnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1219-1230, 2007.

21. Li, Y.-L., J.-Y. Huang, and M.-J. Wang, "Investigation of electromagnetic interaction between a spherical target and a conducting plane," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1703-1715, 2007.

22. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906

23. Kukharchik, P. D., V. M. Serdyuk, and J. A. Titovitsky, "Diffraction of hybrid modes in a cylindrical cavity resonator by a transverse circular slot with a plane anisotropic dielectric layer," Progress In Electromagnetics Research B, Vol. 3, 73-94, 2008.
doi:10.2528/PIERB07112502

24. Li, Y.-L., J.-Y. Huang, M.-J. Wang, and J. Zhang, "Scattering field for the ellipsoidal targets irradiated by an electromagnetic wave with arbitrary polarizing and propagating direction," Progress In Electromagnetics Research Letters, Vol. 1, 221-235, 2008.
doi:10.2528/PIERL07120610

25. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic resonances and Q factor of a chiral sphere," IEEE Trans. Antennas Propagat., Vol. 52, No. 1, 213-219, January 2004.
doi:10.1109/TAP.2003.822451

26. Rao, T. C. K., "Resonant frequency and Q-factor of a cylindrical cavity containing a chiral medium," Int. J. Electronics, Vol. 73, No. 1, 183-191, 1992.
doi:10.1080/00207219208925657

27. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Eigenmodes of a chiral sphere with a perfectly conducting coating," J. Phys. D: Appl. Phys., Vol. 22, 825-828, 1989.
doi:10.1088/0022-3727/22/6/020

28. Hui, H. T. and E. K. N. Yung, "The quality factor of a spherical cavity filled with a chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 41-52, 2001.
doi:10.1163/156939301X00616

29. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Wave in Chiral and Bi-Isotropic Media, Artech House, Boston, 1994.

30. Worasawate, D., Electromagnetic scattering from an arbitrarily shaped three-dimensional chiral body, Ph.D. Dissertation, Syracuse University, 2002.

31. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

32. Lai, S.-L. and W.-G. Lin, "A five mode single spherical cavity microwave filter," IEEE Microwave Theory and Techniques Society International Microwave Symposium Digest 1992, Vol. 2, 909-912, June 1–5 1992.