Vol. 103
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-04-17
DOA Estimation with Sub-Array Divided Technique and Interporlated ESPRIT Algorithm on a Cylindrical Conformal Array Antenna
By
Progress In Electromagnetics Research, Vol. 103, 201-216, 2010
Abstract
A novel DOA finding method for conformal array applications is proposed. By using sub-array divided and interpolation technique, ESPRIT-based algorithms can be used on conformal arrays for 1-D and 2-D DOA estimation. In this paper, the circular array mounted on a metallic cylindrical platform is divided to several sub-arrays, and each sub-array is transformed to virtual uniform linear array or virtual uniform planar array through interpolation technique. 1-D and 2-D direction of arrivals can be estimated accurately and quickly by using LS-ESPRIT and 2-D DFT-ESPRIT algorithms, respectively. This method can be applied not only to cylindrical conformal array but also to any other arbitrary curved conformal arrays. Validity of this method is proved by simulation results.
Citation
Peng Yang Feng Yang Zai-Ping Nie , "DOA Estimation with Sub-Array Divided Technique and Interporlated ESPRIT Algorithm on a Cylindrical Conformal Array Antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904
http://www.jpier.org/PIER/pier.php?paper=10011904
References

1. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, IEEE Press Series on Electromagnetic Wave Theory, 2006.
doi:10.1002/047178012X

2. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, New York, 2005.

3. Tuncer, E. and B. Friedlander, "Classical and Modern Direction of Arrival Estimation," Elsevier, Burlington, MA, 2009.

4. Schmit, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

5. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acoust., Speech, Signal Process., Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276

6. Peng, Y., Y. Feng, and Z. Nie, DOA estimation using MUSIC algorithm on a cylindrical conformal antenna array, IEEE Antennas and Propagation Symposium, 5299-5302, 2007.

7. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2D angle estimation with uniform circular arrays," IEEE Trans. Signal Processing, Vol. 42, No. 9, 2395-2407, 1994.
doi:10.1109/78.317861

8. Friedlander, B., Direction finding with an interpolated array, Proc., ICASSP, 2951-2954, Albuquerque, NM, Apr. 1990.

9. Weiss, A. J. and M. Gavish, "Direction finding using ESPRIT with interpolated arrays," IEEE Trans. Signal Processing, Vol. 39, No. 6, 1473-1478, 1991.
doi:10.1109/78.136564

10. Friedlander, B. and A. J. Weiss, "Direction finding for wideband signals using an interpolated array," IEEE Trans. Signal Processing, Vol. 41, No. 4, 1618-1634, 1993.
doi:10.1109/78.212735

11. Yuen, N. and B. Friedlander, "Asymptotic performance analysis of esprit, higher order esprit, and virtual ESPRIT algorithms," IEEE Trans. Signal Processing, Vol. 44, No. 10, 2537-2550, Oct. 1996.
doi:10.1109/78.539037

12. Hwang, S. and T. K. Sarkar, Direction of arrival (DOA) estimation using a transformation matrix through singular value decomposition, IEEE Antennas and Propagation Symposium, 130-133, 2005.

13. Rubsamen, M. and A. B. Gershman, Root-MUSIC based direction of arrival estimation methods for arbitrary non-uniform arrays, Proc., ICASSP, 2317-2320, 2008.

14. Zoltowski, M. D., M. Haardt, and C. P. Mathews, "Closed form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT ," IEEE Trans. Signal Processing, Vol. 44, No. 2, 316-328, Feb. 1996.
doi:10.1109/78.485927