1. Dong, J. and C. Xu, "Characteristics of guided modes in planar chiral nihility meta-material waveguides," Progress In Electromagnetics Research B, Vol. 14, 107-126, 2009.
doi:10.2528/PIERB09012201 Google Scholar
2. Hsu, H.-T. and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
doi:10.2528/PIERL09032803 Google Scholar
3. Illahi, A. and Q. A. Naqvi, "Study of focusing of electromagnetic waves re°ected by a PEMC backed chiral nihility reflector using Maslov's method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 863-873, 2009.
doi:10.1163/156939309788355216 Google Scholar
4. Varadan, V. K., V. V. Varadan, and A. Lakhtakia, "On the possibility of designing anti-reflection coatings using chiral materials," J. Wave-Mater. Interact., Vol. 2, No. 1, 71-81, 1987. Google Scholar
5. Bohren, C. F. and F. Craig, "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, No. 3, 458-462, Dec. 1974.
doi:10.1016/0009-2614(74)85144-4 Google Scholar
6. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface, Sci., Vol. 66, No. 1, 105-109, Aug. 1978.
doi:10.1016/0021-9797(78)90189-3 Google Scholar
7. Chittayil, K. and A. Lakhtakia, "Electromagnetic scattering by a chiral cylinder immersed in another chiral medium," Optik, Vol. 89, 59-64, 1991. Google Scholar
8. Kluskens, M. S. and E. H. Newman, "Scattering by a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propag., Vol. 38, No. 9, 1448-1455, Sep. 1990.
doi:10.1109/8.56998 Google Scholar
9. Lakhtakia, A. and B. Shanker, "Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell-Garnett model," Int. J. Appl. Electromagn. Mater., Vol. 4, 65-82, 1993. Google Scholar
10. Rojas, R. G., "Integral equations for EM scattering by homogeneous/inhomogeneous two-dimensional chiral bodies," Inst. Elect. Eng. Microw., Antennas Propag., Vol. 141, No. 5, 385-392, May 1994.
doi:10.1049/ip-map:19941267 Google Scholar
11. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects," Applied Optics, Vol. 24, 4146-4154, 1985.
doi:10.1364/AO.24.004146 Google Scholar
12. Lakhtakia, A., "The extended boundary condition method for scattering by a chiral scatterer in a chiral medium: Formulation and analysis ," Optik, Vol. 86, 155-161, 1991. Google Scholar
13. Zhang, Y. J., A. Bauer, and E. P. Li, "T-matrix analysis of multiple scattering from parallel semi-circular channels filled with chiral media in a conducting plane," Progress In Electromagnetics Research, Vol. 53, 299-318, 2009. Google Scholar
14. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propag., Vol. 51, No. 5, 1077-1084, 2003.
doi:10.1109/TAP.2003.811501 Google Scholar
15. Yuceer, M., J. R. Mautz, and E. Arvas, "Moment of methods solution for the radar cross section of a chiral body of revolution," IEEE Trans. Antennas Propag., Vol. 53, 1163-1167, 2005.
doi:10.1109/TAP.2004.842664 Google Scholar
16. Dunn, E. A., J.-K. Byun, E. D. Branch, and J.-M. Jin, "Numerical simulation of BOR scattering and radiation using a higher order FEM ," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 945-952, Mar. 2006.
doi:10.1109/TAP.2006.869936 Google Scholar
17. Chen, J. and J. G. Wang, "A novel body-of-revolution finite-difference time-domain method with weakly conditional stability," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 6, 377-399, Jun. 2008.
doi:10.1109/LMWC.2008.922574 Google Scholar
18. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the transform method," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3374-3384, Oct. 2005.
doi:10.1109/TAP.2005.856328 Google Scholar
19. Semichaevsky, A., A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, "Novel BI-FDTD approach for the analysis of chiral cylinders and spheres," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 925-932, Mar. 2006.
doi:10.1109/TAP.2006.869898 Google Scholar
20. Wang, X. D., H. W. Douglas, L. W. Li, and Y. B. Gan, "Interaction of electromagnetic waves with 3-D arbitrarily shaped homogeneous chiral targets in the presence of a lossy half space," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3647-3655, Dec. 2007.
doi:10.1109/TAP.2007.910336 Google Scholar
21. Chen, R. S., Y. Q. Hu, Z. H. Fan, D. Z. Ding, D. X. Wang, and E. K. N. Yung, "An efficient surface integral equation solution to EM scattering by chiral objects above a lossy half space," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3586-3593, 2009.
doi:10.1109/TAP.2009.2023628 Google Scholar
22. Wang, D. X., P. Y. Lau, E. K. N. Yung, and R. S. Chen, "Scattering by conducting bodies coated with bi-isotropic materials," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2313-2319, Aug. 2007.
doi:10.1109/TAP.2007.901850 Google Scholar
23. Ding, D.-Z., R.-S. Chen, and Z. H. Fan, "SSOR preconditioned inner-outer flexible GMRES method for MLFMM analysis of scattering of open objects," Progress In Electromagnetics Research, Vol. 89, 339-357, 2009.
doi:10.2528/PIER08112601 Google Scholar
24. Ding, D. Z., R. S. Chen, Z. H. Fan, and P. L. Rui, "A novel hierarchical two-level spectral preconditioning technique for multilevel fast multipole analysis of electromagnetic wave scattering ," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1122-1132, Apr. 2008.
doi:10.1109/TAP.2008.919188 Google Scholar
25. Umashankar, K., A. Taove, and S. M. Rao, "Electromagnetic scattering by arbitrarily shaped three-dimensional homogeneous lossy dielectric objects ," IEEE Trans. Antennas Propag., Vol. 34, No. 6, 758-766, 1986.
doi:10.1109/TAP.1986.1143894 Google Scholar
26. He, J. Q., T. J. Yu, N. Geng, and L. Carin, "Moment of methods analysis of electromagnetic scattering from a general three-dimensional dielectric target embedded in a multilayered medium," Radio Sci., Vol. 35, 305-313, Mar.-Apr. 2000. Google Scholar
27. He, J. Q., A. Sullivan, and L. Carin, "Multilevel fast multipole algorithm for three-dimensional dielectric targets in the vicinity of a lossy half space ," Microw. Opt. Tech. Lett., Vol. 29, No. 2, 100-104, Apr. 2001.
doi:10.1002/mop.1097 Google Scholar
28. Ding, D.-Z., R.-S. Chen, and Z. H. Fan, "Application of two-step spectral preconditioning technique for electromagnetic scattering in half-space ," Progress In Electromagnetics Research, Vol. 94, 383-402, 2009.
doi:10.2528/PIER09060906 Google Scholar
29. Aksun, M. I., "A robust approach for the derivation of closed-form Green's functions ," IEEE Trans. Microwave Theory and Techique, Vol. 44, 651-658, May 1996.
doi:10.1109/22.493917 Google Scholar
30. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I: Theroy," IEEE Trans. Antennas Propag., Vol. 38, 335-344, Mar. 1990.
doi:10.1109/8.52240 Google Scholar
31. Chen, R. S., L. Mo, and E. K. N. Yung, "Multifrontal method preconditioned GMRES-FFT algorithm for fast analysis of microstrip circuits ," International Journal for Computational and Mathematics in Electrical and Electronic Engineering, Vol. 24, No. 1, 94-106, 2005.
doi:10.1108/03321640510571075 Google Scholar