Vol. 105
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-09
An Adaptive Cavity Setup for Accurate Measurements of Complex Dielectric Permittivity
By
Progress In Electromagnetics Research, Vol. 105, 141-155, 2010
Abstract
In order to enhance the accuracy of the complex permittivity data employed in Ground Penetrating Radar (GPR) techniques, an adaptive cavity setup is presented. The use of moveable walls permits to relax the mechanical constraints on the sample dimensions so that it can be employed also in complicate measurement condition as, for example, in the case of wet samples. Moreover, exploiting the cavity resonance phenomenon, low loss materials, such as some type of marbles, can be accurately evaluated. The numerical characterization, the parametric analyses and the L-band measurement results show the validity and the reliability of this configuration.
Citation
Giuseppe Addamo Giuseppe Virone Davide Vaccaneo Riccardo Tascone Oscar A. Peverini Renato Orta , "An Adaptive Cavity Setup for Accurate Measurements of Complex Dielectric Permittivity," Progress In Electromagnetics Research, Vol. 105, 141-155, 2010.
doi:10.2528/PIER10042606
http://www.jpier.org/PIER/pier.php?paper=10042606
References

1. Olhoeft, G. R., "Electromagnetic field and material properties in ground penetrating radar," Advanced Ground Penetrating Radar, 144-147, Proceedings of the 2nd International Workshop on May 14-16, 2003.

2. Soldovieri, F. and N. Romano, "The mutual interaction between the reconfigurable transmitting and receiving antennas in ground penetrating radar surveys ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14/15, 1919-1928, 2009.
doi:10.1163/156939309789932359

3. Cardarelli, E., A. Godio, G. Morelli, L. Sambuelli, G. Santarato, and L. V. Socco, "Integrated geophysical surveys to investigate the Scarsella vault of St. John's baptistery in Florence ," The Leading Edge, Vol. 21, No. 5, 467-470, 2002.
doi:10.1190/1.1481255

4. Mandeep, J. S., N. K. Loke, S. I. S. Hassan, M. F. Ain, S. Sreekantan, and K. Y. Cheong, "Investigation of microwave properties of high permittivity ceramic substrate," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14/15, 1873-1882, 2009.

5. Turner, G., A. F. Siggins, and L. D. Hunt, "Ground penetrating radar --- Will it clear the haze at your site?," Exploration geophysics, Vol. 24, 819-832, 1993.
doi:10.1071/EG993819

6. Wu, Y., Z. X. Tang, Y. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on cpw transmission line," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 555-562, 2008.
doi:10.1163/156939308784150272

7. Sambuelli, L., A. Godio, T. J. Guo, and L. V. Socco, Laboratory determination of the dielectric permittivity of building stones in the 0.2-6 GHz band, Proc. of the IV Meeting of the Environmental and Engineering Geophysical Society (European Section), 477-480, Barcelona, Spain, September 14-17, 1998.

8. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
doi:10.2528/PIERB08072005

9. Bringhurst, S. and M. F. Iskander, "Thin sample dielectric properties measurement using open-ended coaxial probes and FDTD calculations ," Antennas and Propagation Society, Vol. 4, 1844-1847, June 1995.

10. Kumar, A. and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 4754, 2007.

11. Rajab, K. Z., K. F. Fuh, R. Mittra, and M. Lanagan, "Dielectric property measurement using a resonant nonradiative dielectric waveguide structure," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 104-107, February 2005.
doi:10.1109/LMWC.2004.842845

12. Akhtar, M. J., L. E. Feher, and M. Thumm, "A waveguide-based two-step approach for measuring complex permittivity tensor of uniaxial composite materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2011-2022, May 2006.
doi:10.1109/TMTT.2006.873623

13. Atanaskovid, A., V. Tasi, and S. Ivkovid, Automatization of the complex dielectric constant measurement, Proc. of the 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, Vol. 2, 691-694, September 19-21, 2001.

14. Vaccaneo, D., L. Sambuelli, P. Marini, R. Tascone, and R. Orta, "Measurement system of complex permittivity of ornamental rocks in l frequency band," IEEE Trans. on Geoscience and Remote Sensing, Vol. 42, No. 11, 2490-2498, November 2004.
doi:10.1109/TGRS.2004.835225

15. Vaccaneo, D., R. Tascone, and R. Orta, Adaptive cavity for complex permittivity measurement of rock materials, Proc. of the 2004 URSI EMTS, Pisa, Italy, May 23-27, 2004.

16. Peverini, O. A., R. Tascone, M. Baralis, G. Virone, D. Trinchero, and R. Orta, "Reduced-order optimized mode-matching CAD of microwave waveguide components," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 311-318, January 2004.
doi:10.1109/TMTT.2003.820893

17. Itoh, T., Numerical Techniques For Microwave and Millimeter-wave Passive Structures, John Wiley & Sons Ltd., 1989.

18. Motavali, H. and A. Rostami, "Exactly modal analysis of inhomogeneous slab waveguide using nikiforov-uvarov method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 681-692, 2008.
doi:10.1163/156939308784159507

19. Lancellotti, V. and R. Orta, "Guided waves in layered cubic media: Convergence study of a polynomial expansion approach," J. Acoust. Soc. Am., Vol. 104, No. 5, 2638-2644, November 1998.
doi:10.1121/1.423847

20. Essid, C., M. B. B. Salah, K. Kochlef, A. Samet, and A. B. Kouki, "Spatial-spectral formulation of method of moment for rigorous analysis of microstrip structures ," Progress In Electromagnetics Research Letters, Vol. 6, 17-26, 2009.
doi:10.2528/PIERL08112706

21. Lin, H., G. Wang, and F. Liang, "A novel unconditionally stable pstd method based on weighted laguerre polynomial expansion," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8/9, 1011-1020, 2009.

22. Torre, A., "The relativistic hermite polynomials and the wave equation," Progress In Electromagnetics Research B, Vol. 16, 21-56, 2009.
doi:10.2528/PIERB09031604

23. Chen, C. P., M. Y. Chen, J. P. Yu, M. Niu, and D. Xu, Uncertainty analysis for the simultaneous measurement of complex electromagnetic parameters using an open-ended coaxial probe, Instrumentation and Measurement Technology Conference, Vol. 1, 61-65, 2004.