1. Cheng, D. K. and C. A. Chen, "Optimum element spacings for Yagi-Uda arrays," IEEE Transactions on Antennas and Propagation, Vol. 21, 615-623, 1973.
doi:10.1109/TAP.1973.1140551 Google Scholar
2. Chen, C. A. and D. K. Cheng, "Optimum element lengths for Yagi-Uda arrays," IEEE Transactions on Antennas and Propagation, Vol. 23, 8-15, 1975.
doi:10.1109/TAP.1975.1141001 Google Scholar
3. Cheng, D. K., "Gain optimization for Yagi-Uda arrays," IEEE Antennas and Propagation Magazine, Vol. 33, 42-45, 1991.
doi:10.1109/74.88220 Google Scholar
4. Jones, E. A. and W. T. Joines, "Design of Yagi-Uda antennas using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 45, 1386-1392, 1997.
doi:10.1109/8.623128 Google Scholar
5. Venkatarayalu, N. V. and T. Ray, "Single and multi-objective design of Yagi-Uda antennas using computational intelligence," Congr. Evol. Comput., Vol. 2, 1237-1242, 2003. Google Scholar
6. Venkatarayalu, N. V. and T. Ray, "Optimum design of Yagi-Uda antennas using computational intelligence," IEEE Transactions on Antennas and Propagation, Vol. 52, 1811-1818, 2004.
doi:10.1109/TAP.2004.831338 Google Scholar
7. Baskar, S., A. Alphones, P. M. Suganthan, and J. J. Liang, "Design of Yagi-Uda antennas using comprehensive learning particle swarm optimisation," IEE Proceedings: Microwaves, Antennas and Propagation, Vol. 152, 340-346, 2005.
doi:10.1049/ip-map:20045087 Google Scholar
8. Kuwahara, Y., "Multiobjective optimization design of Yagi-Uda antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, 1984-1992, 2005.
doi:10.1109/TAP.2005.848501 Google Scholar
9. Misra, I. S., R. S. Chakrabarty, and B. B. Mangaraj, "Design, analysis and optimization of V-dipole and its three-element Yagi-Uda array," Progress In Electromagnetics Research, Vol. 66, 137-156, 2006.
doi:10.2528/PIER06102604 Google Scholar
10. Rattan, M., M. S. Patterh, and B. S. Sohi, "Optimization of Yagi-Uda antenna using simulated annealing," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 291-299, 2008.
doi:10.1163/156939308784160749 Google Scholar
11. Bemani, M. and S. Nikmehr, "A novel wide-band microstrip Yagi-Uda array antenna for WLAN applications," Progress In Electromagnetics Research B, Vol. 16, 389-406, 2009.
doi:10.2528/PIERB09053101 Google Scholar
12. Li, J. Y. and J. L. Guo, "Optimization technique using differential evolution for Yagi-Uda antennas," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 449-461, 2009.
doi:10.1163/156939309787612356 Google Scholar
13. Teisbaek, H. B. and K. B. Jakobsen, "Koch-fractal Yagi-Uda antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 149-160, 2009.
doi:10.1163/156939309787604337 Google Scholar
14. Chou, H. T., K. L. Hung, and C. Y. Chen, "Utilization of a Yagi antenna director array to synthesize a shaped radiation pattern for optimum coverage in wireless communications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 851-861, 2009.
doi:10.1163/156939309788355298 Google Scholar
15. Sun, B. H., S. G. Zhou, Y. F. Wei, and Q. Z. Liu, "Modified two-element Yagi-Uda antenna with tunable beams," Progress In Electromagnetics Research, Vol. 100, 175-187, 2010.
doi:10.2528/PIER09111501 Google Scholar
16. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304 Google Scholar
17. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude-phase synthesis of dual-pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301 Google Scholar
18. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the di®erential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308 Google Scholar
19. Zhang, Y. J., S. X. Gong, and Y. X. Xu, "Radiation pattern synthesis for arrays of conformal antennas mounted on an irregular curved surface using modified genetic algorithms," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1255-1264, 2009.
doi:10.1163/156939309789108589 Google Scholar
20. Zhang, S., S. X. Gong, Y. Guan, P. F. Zhang, and Q. Gong, "A novel IGA-edsPSO hybrid algorithm for the synthesis of sparse arrays," Progress In Electromagnetics Research, Vol. 89, 121-134, 2009.
doi:10.2528/PIER08120806 Google Scholar
21. Lim, S. and H. Ling, "Comparing electrically small folded conical and spherical helix antennas based on a genetic algorithm optimization," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1585-1593, 2009. Google Scholar
22. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring sierpinski carpet arrays optimized by genetic algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110 Google Scholar
23. Luo, Z., X. Chen, and K. Huang, "A novel electrically-small microstrip genetic antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 513-520, 2010. Google Scholar
24. Kennedy, J. and R. Eberhart, "Particle swarm optimization," IEEE International Conference on Neural Networks, Piscataway, NJ, 1995. Google Scholar
25. Ababneh, J., M. Khodier, and N. Dib, "Synthesis of interdigital capacitors based on particle swarm optimization and artificial neural networks," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 16, 322-330, 2006.
doi:10.1002/mmce.20141 Google Scholar
26. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, K. R. Mahmoud, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.
doi:10.2528/PIER07030904 Google Scholar
27. Mikki, S. M. and A. A. Kishk, "Physical theory for particle swarm optimization," Progress In Electromagnetics Research, Vol. 75, 171-207, 2007.
doi:10.2528/PIER07051502 Google Scholar
28. Semnani, A. and M. Kamyab, "An enhanced method for inverse scattering problems using fourier series expansion in conjunction with FDTD and PSO," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
doi:10.2528/PIER07061204 Google Scholar
29. Najjar, Y., Y. Moneer, and N. Dib, "Design of optimum gain pyramidal horn with improved formulas using particle swarm optimization," nternational Journal of RF and Microwave Computer-Aided Engineering, Vol. 17, 505-511, 2007.
doi:10.1002/mmce.20245 Google Scholar
30. Dib, N. and M. Khodier, "Design and optimization of multi-band Wilkinson power divider," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 18, 14-20, 2008.
doi:10.1002/mmce.20261 Google Scholar
31. Shihab, M., Y. Najjar, N. Dib, and M. Khodier, "Design of non-uniform circular antenna arrays using particle swarm optimization," Journal of Electrical Engineering, Vol. 59, 216-220, 2008. Google Scholar
32. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702 Google Scholar
33. Huang, C. H., C. C. Chiu, C. L. Li, and K. C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER08031904 Google Scholar
34. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904 Google Scholar
35. Li, W. T., X. W. Shi, L. Xu, and Y. Q. Hei, "Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, Vol. 80, 461-476, 2008.
doi:10.2528/PIER07121503 Google Scholar
36. Lu, Z. B., A. Zhang, and X. Y. Hou, "Pattern synthesis of cylindrical conformal array by the modified particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 79, 415-426, 2008.
doi:10.2528/PIER07103004 Google Scholar
37. Benedetti, M., G. Oliveri, P. Rocca, and A. Massa, "A fully-adaptive smart antenna prototype: Ideal model and experimental validation in complex interference scenarios," Progress In Electromagnetics Research, Vol. 96, 173-191, 2009.
doi:10.2528/PIER09080904 Google Scholar
38. Khodier, M. and M. Al-Aqeel, "Linear and circular array optimization: A study using particle swarm intelligence," Progress In Electromagnetics Research B, Vol. 15, 347-373, 2009.
doi:10.2528/PIERB09033101 Google Scholar
39. Lanza, M., J. R. Perez Lopez, and J. Basterrechea, "Synthesis of planar arrays using a modified particle swarm optimization algorithm by introducing a selection operator and elitism," Progress In Electromagnetics Research, Vol. 93, 145-160, 2009.
doi:10.2528/PIER09041303 Google Scholar
40. Li, G., S. Yang, Y. Chen, and Z. Nie, "A novel electronic beam steering technique in time modulated antenna arrays," Progress In Electromagnetics Research, Vol. 97, 391-405, 2009.
doi:10.2528/PIER09072602 Google Scholar
41. Perez, J. R. and J. Basterrechea, "Hybrid particle swarm-based algorithms and their application to linear array synthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.
doi:10.2528/PIER08122212 Google Scholar
42. Zhang, S., S. X. Gong, and P. F. Zhang, "A modified PSO for low sidelobe concentric ring arrays synthesis with multiple constraints," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1535-1544, 2009.
doi:10.1163/156939309789476239 Google Scholar
43. Islam, M. T., M. Moniruzzaman, N. Misran, and M. N. Shakib, "Curve fitting based particle swarm optimization for UWB patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2421-2432, 2009. Google Scholar
44. Zhang, L., F. Yang, and A. Z. Elsherbeni, "On the use of random variables in particle swarm optimizations: A comparative study of gaussian and uniform distributions," gaussian and uniform distributions Waves and Applications, Vol. 23, No. 5-6, 711-721, 2009. Google Scholar
45. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, 182-197, 2002.
doi:10.1109/4235.996017 Google Scholar
46. OuYang, J., F. Yang, S. W. Yang, and Z. P. Nie, "The improved NSGA-II approach," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 163-172, 2008.
doi:10.1163/156939308784160703 Google Scholar
47. Jiang, L., J. Cui, L. Shi, and X. Li, "Pareto optimal design of multilayer microwave absorbers for wide-angle incidence using genetic algorithms," IET Microwaves Antennas & Propagation, Vol. 3, 572-579, 2009.
doi:10.1049/iet-map.2008.0059 Google Scholar
48. Storn, R. and K. Price, "Differential evolution --- A simple and efficient adaptive scheme for global optimization over continuous spaces,", Tech. Rep. TR-95-012, 1995, http://citeseer.ist.psu.edu/article/storn95differential.html.. Google Scholar
49. Storn, R. and K. Price, "Differential evolution --- A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, 341-359, 1997.
doi:10.1023/A:1008202821328 Google Scholar
50. Das, S., A. Konar, and U. K. Chakraborty, "Two improved differential evolution schemes for faster global search," GECCO 2005 | Genetic and Evolutionary Computation Conference, Washington, D.C., 2005.
doi:10.1109/TEVC.2008.2009457 Google Scholar
51. Das, S., A. Abraham, U. K. Chakraborty, and A. Konar, "Differential evolution using a neighborhood-based mutation operator," IEEE Transactions on Evolutionary Computation, Vol. 13, 526-553, 2009.
doi:10.2528/PIER08070403 Google Scholar
52. Panduro, M. A. and C. Del Rio Bocio, "Design of beamforming networks for scannable multi-beam antenna arrays using CORPS," Progress In Electromagnetics Research, Vol. 84, 173-188, 2008.
doi:10.2528/PIER07111003 Google Scholar
53. Shahoei, H., H. Ghafoori-Fard, and A. Rostami, "A novel design methodology of multiclad single mode optical fiber for broadband optical networks," Progress In Electromagnetics Research, Vol. 80, 253-275, 2008.
doi:10.2528/PIER09122306 Google Scholar
54. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.1163/156939310791036368 Google Scholar
55. Li, G., S. Yang, M. Huang, and Z. Nie, "Sidelobe suppression in time modulated linear arrays with unequal element spacing," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 775-783, 2010. Google Scholar
56. Pal, S., B. Qu, S. Das, and P. N. Suganthan, "Linear antenna array synthesis with constrained multi-objective differential evolution," Progress In Electromagnetics Research B, Vol. 21, 87-111, 2010. Google Scholar
57. Pal, S., S. Das, A. Basak, and P. N. Suganthan, "Synthesis of difference patterns for monopulse antennas with optimal combination of array-size and number of subarrays --- A multi-objective optimization approach," Progress In Electromagnetics Research B, Vol. 21, 257-280, 2010. Google Scholar
58. Zhang, Q., W. Liu, and H. Li, "The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances," IEEE Congress on Evolutionary Computation, Trondheim, 2009.
doi:10.1109/TEVC.2008.925798 Google Scholar
59. Li, H. and Q. Zhang, "Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 13, 284-302, 2009. Google Scholar
60. Kukkonen, S. and J. Lampinen, "GDE3: The third evolution step of generalized differential evolution," Proceedings of the 2005 IEEE Congress on Evolutionary Computation, 2005. Google Scholar
61. Kukkonen, S. and J. Lampinen, "Performance assessment of generalized differential evolution 3 (GDE3) with a given set of problems," Proceedings of the IEEE Congress on Evolutionary Computation, 2007.
doi:10.1109/MCI.2008.919050 Google Scholar
62. Tan, K. C., "CEC 2007 conference report," IEEE Computational Intelligence Magazine, Vol. 3, 72-73, 2008.
doi:10.1109/TAP.2009.2032100 Google Scholar
63. Goudos, S. K. and J. N. Sahalos, "Pareto optimal microwave filter design using multiobjective differential evolution," IEEE Transactions on Antennas and Propagation, Vol. 58, 132-144, 2010.
doi:10.1007/s00158-003-0368-6 Google Scholar
64. Marler, R. T. and J. S. Arora, "Survey of multi-objective optimization methods for engineering," Structural and Multidisciplinary Optimization, Vol. 26, 369-395, 2004. Google Scholar
65. Qu, B. Y. and P. N. Suganthan, "Constrained multi-objective optimization algorithm with ensemble of constraint handling methods," Engineering Optimization, In press, 2010. Google Scholar
66. Kukkonen, S., S. R. Jangam, and N. Chakraborti, "Solving the molecular sequence alignment problem with generalized di®erential evolution 3 (GDE3)," Proceedings of IEEE Symposium on Computational Intelligence in Multicriteria Decision Making, 2007. Google Scholar
67. Kukkonen, S. and J. Lampinen, "An empirical study of control parameters for the third version of generalized differential evolution (GDE3)," Proceedings of the IEEE Congress on Evolutionary Computation, 2006. Google Scholar
68. Qu, B. Y. and P. N. Suganthan, "Multi-objective evolutionary algorithms based on the summation of normalized objectives and diversified selection," Information Sciences, In press, Uncorrected Proof, doi:10.1016/j.ins.2010.05.013, 2010. Google Scholar
69. Zhao, S. Z. and P. N. Suganthan, "Two-lbests based multi-objective particle swarm optimizer," Engineering Optimization, In press, 2010. Google Scholar