1. Hwang, R. B., H. W. Liu, and C.Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606 Google Scholar
2. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401 Google Scholar
3. Jang, G. and S. Kahng, "Design of a dual-band metamaterial band-pass filter using zeroth order resonance," Progress In Electromagntics Research C, Vol. 12, 149-162, 2010.
doi:10.2528/PIERC09122001 Google Scholar
4. Navarro-Cía, M., J. M. Carrasco, M. Beruete, and F. Falcone, "Ultra-wideband metamaterial filter based on electroinductive-wave coupling between microstrips," Progress In Electromagnetics Research Letters, Vol. 12, 141-150, 2009.
doi:10.2528/PIERL09102106 Google Scholar
5. Alù, A., M. G. Silveirinha, A. Salandrinoz, and N. Engheta, "Epsilon-near-zero (ENZ) metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 155410, 2007.
doi:10.1103/PhysRevB.75.155410 Google Scholar
6. Murthy, D. V. B., A. Corona-Chávez, and J. L. Olvera-Cervantes, "A novel epsilon near zero (ENZ) tunneling circuit using microstrip technology for high integrability applications," Progress In Electromagnetics Research C, Vol. 15, 65-74, 2010.
doi:10.2528/PIERC10060202 Google Scholar
7. Edwards, B., A. Alù, M. G. Silveirinha, and N. Engheta1, "Reflectionless sharp bends and corners using epsilon-near-zero effects," Journal of Applied Physics, Vol. 105, No. 4, 044905, 2009.
doi:10.1063/1.3074506 Google Scholar
8. Edwards, B., A. Alù, M. G. Silveirinha, and N. Engheta, "Comparison between ε-near-zero and fabry-perot resonant transmission through waveguide bends and channels," URSI General Assembly, 303, Chicago, IL, USA, Aug. 2008. Google Scholar
9. Edwars, B., A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Physical Review Letters, Vol. 100, No. 3, Jan. 2008. Google Scholar
10. Garcia, N., M. Munoz, E. V. Ponizovskaya, and M. Nieto-Vesperinas, "Zero permeability materials (ZmuM): A way out of the left handed materials trap,", Cornell University Library, 2010. Google Scholar
11. Jin, Y., P. Zhang, and S. He, "Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial," Phys. Rev. B, Vol. 81, 085117, 2010.
doi:10.1103/PhysRevB.81.085117 Google Scholar
12. Yang, J., M. Huang, and J. Peng, "Directive emission obtained by Mu and epsilon-near-zero metamaterials," Radioengineering Journal, Vol. 18, 2009. Google Scholar
13. Tassin, P., X. Sahyoun, and I. Veretennicoff, "Miniaturization of photonic waveguides by the use of left-handed materials," Appl. Phys. Lett., Vol. 92, 203111, 2008.
doi:10.1063/1.2936299 Google Scholar
14. Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics, Vol. 2, 496-500, 2008.
doi:10.1038/nphoton.2008.131 Google Scholar
15. Abdelaziz, A. F., T. M. Abuelfadl, and O. L. Elsayed, "Realization of composite right/left-handed transmission line using coupled lines," Progress In Electromagnetics Research, Vol. 92, 299-315, 2009.
doi:10.2528/PIER09040305 Google Scholar
16. Niu, J. X. and X. L. Zhou, "Analysis of balanced composite right/left handed structure based on different dimensions of complementary split ring resonators," Progress In Electromagnetics Research, Vol. 74, 341-351, 2007.
doi:10.2528/PIER07051802 Google Scholar
17. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley and Sons, Inc., 2006.
18. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip, `LH line'," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 412-415, Aug. 2002. Google Scholar
19. Wang, Y., Y. Zhang, H. Li, L. He, F. Liu, and H. Chen, "Coupling characteristics between composite right-/left-handed transmission line and conventional transmission line," International Conference on Microwave and Millimeter Wave Technology, 2008. ICMMT 2008, Vol. 4, 1620-1623, Apr. 2008.
doi:10.1109/ICMMT.2008.4540773 Google Scholar
20. Dong, Y. D. and T. Itoh, "Composite right/left-handed substrate integrated waveguide and half-mode substrate integrated waveguide," IEEE MTT-S International Microwave Symposium Digest, 2009, MTT'09, 49-52, Jun. 2009.
doi:10.1109/MWSYM.2009.5165629 Google Scholar
21. Hong, W., B. Liu, Y. Wang, Q. Lai, H. Tang, X. X. Yin, Y. D. Dong, Y. Zhang, and K. Wu, "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Proc. Joint 31st Int. Conf. Inf. Millim. Waves 14th Int. Conf. Terahertz Electron., 18-22, Shanghai, China, Sep. 2006. Google Scholar
22. Wang, Y., W. Hong, Y. Dong, B. Liu, H. J. Tang, J. Chen, X. Yin, and K. Wu, "Half mode substrate integrated waveguide (HMSIW) bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, 265-267, Apr. 2007.
doi:10.1109/LMWC.2007.892958 Google Scholar
23. Liu, B., W. Hong, Y. Q. Wang, Q. H. Lai, and K. Wu, "Half mode substrate integrated waveguide (HMSIW) 3-dB coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 1, 22-24, Jan. 2007.
doi:10.1109/LMWC.2006.887244 Google Scholar
24. Wang, Z., X. Li, S. Zhou, B. Yan, R. M. Xu, and W. Lin, "Half mode substrate integrated folded waveguide (HMSIFW) and partial h-plane bandpass filter," Progress In Electromagnetics Research, Vol. 101, 203-216, 2010.
doi:10.2528/PIER10011201 Google Scholar
25. Lai, Q. H., W. Hong, Z. Q. Kuai, Y. S. Zhang, and K. Wu, "Half-mode substrate integrated waveguide transverse slot array antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1064-1072, Apr. 2009.
doi:10.1109/TAP.2009.2015799 Google Scholar
26. Ansoft HFSS software, version 11.
27. Lubkowski, G., R. Schuhmann, and T. Weiland, "Extraction of effective metamaterial parameters by parameter fitting of dispersive models," Microwave Optics and Technology Letters, Vol. 49, No. 2, 285-288, Feb. 2007.
doi:10.1002/mop.22105 Google Scholar
28. Marcuvitz, N., Waveguide Handbook, Peter Peregrinus Ltd., 1986.
doi:10.1049/PBEW021E
29. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech House, 1980.
30. Liu, C. and K. Huang, "A compact substrate integrated waveguide band-pass filter," PIERS Proceedings, 1135-1138, Cambridge, USA, Jul. 5-8, 2010. Google Scholar
31. Deng, H., "A novel broad bandpass filter with coplanar resonators," 11th IEEE Singapore International Conference on Communication Systems, 2008, ICCS 2008, 630-631, Nov. 2008. Google Scholar
32. Bornemann, J. and S. Y. Yu, "Circular waveguide TM11-mode resonators and their application to polarization-preserving band-pass and quasi-highpass filters," German Microwave Conference 2010, 202-205, Mar. 2010. Google Scholar