Vol. 118
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-07-11
Comparison of Surface Integral Equations for Left-Handed Materials
By
Progress In Electromagnetics Research, Vol. 118, 425-440, 2011
Abstract
A wide analysis of left-handed material (LHM) spheres with different constitutive parameters has been carried out employing different integral-equation formulations based on the Method of Moments. The study is focused on the accuracy assessment of formulations combining normal equations (combined normal formulation, CNF), tangential equations (combined tangential formulation, CTF, and Poggio-Miller-Chang-Harrington-Wu-Tsai formulation, PMCHWT) and both of them (electric and magnetic current combined field integral equation, JMCFIE) when dealing with LHM's. Relevant and informative features as the condition number, the eigenvalues distribution and the iterative response are analyzed. The obtained results show up the suitability of the JMCFIE for this kind of analysis in contrast with the unreliable behavior of the other approaches.
Citation
Marta Gomez Araujo, Jose Taboada, Javier Rivero, and Fernando Obelleiro, "Comparison of Surface Integral Equations for Left-Handed Materials," Progress In Electromagnetics Research, Vol. 118, 425-440, 2011.
doi:10.2528/PIER11031110
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKI, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

3. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1535-1556, April 2005.
doi:10.1109/TMTT.2005.845188

4. Chew, W. C., "Some reflections on double negative materials," Progress In Electromagnetics Research, Vol. 51, 1-26, 2005.
doi:10.2528/PIER04032602

5. Moss, C. D., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left handed metamaterials," Progress In Electromagnetics Research, Vol. 35, 315-322, 2002.
doi:10.2528/PIER02052409

6. Dong, Z. G., S. N. Zhu, H. Liu, J. Zhu, and W. Cao, "Numerical simulations of negative-index refraction in wedge-shaped metamaterials," Phys. Rev. E Stat. Nonlin. Soft Matter Phys., Vol. 72, No. 1, 016607, 18-21, 2005.
doi:10.1103/PhysRevE.72.016607

7. Kantartzis, N. V., D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, "A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna substrates," IEEE Trans. Magn., Vol. 43, No. 4, 1329-1332, April 2007.
doi:10.1109/TMAG.2006.891007

8. Mautz, J. R. and R. F. Harrington, "Electromagnetic scattering from a homogeneous material body of revolution," Arch. Elektron. Uebertraeg., Vol. 33, 71-80, 1979.

9. Ylä-Oijala, P. and M. Taskinen, "Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects ," IEEE Trans. Antennas Propagat., Vol. 53, No. 3, 1168-1173, 2005.
doi:10.1109/TAP.2004.842640

10. Ylä-Oijala, P., M. Taskinen, and S. Järvenpää, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods," Radio Sci., Vol. 40, No. 6, RS6002, 2005.
doi:10.1029/2004RS003169

11. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301

12. Wang, S., X. Guan, D.-W. Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higher-order MoM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

13. Ylä-Oijala, P., "Numerical analysis of combined field integral equation formulations for electromagnetic scattering by dielectric and composite objects ," Progress In Electromagnetics Research C, Vol. 3, 19-43, 2008.
doi:10.2528/PIERC08032501

14. Ergül, Ö. and L. Gürel, "Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm," IEEE Trans. Antennas Propagat., Vol. 57, No. 1, 176-187, 2009.
doi:10.1109/TAP.2008.2009665

15. Cui, Z., Y. Han, Q. Xu, and M. Li, "Parallel MoM solution of jmcfie for scattering by 3-D electrically large dielectric objects," Progress In Electromagnetics Research M, Vol. 12, 217-228, 2010.
doi:10.2528/PIERM10042607

16. Smith, D. L., L. N. Medgyesi-Mitschang, and D. W. Forester, "Surface integral equation formulations for left-handed materials," Progress In Electromagnetics Research, Vol. 51, 27-48, 2005.
doi:10.2528/PIER04032203

17. Liu, Y. A. and W. C. Chew, "Stability of surface integral equation for left-handed materials," IET Microw. Antennas Propag., Vol. 1, No. 1, 84-89, February 2007.
doi:10.1049/iet-map:20050338

18. Rivero, J., J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, "Surface integral equation formulation for the analysis of left-handed metamaterials ," Optics Express, Vol. 18, No. 15, 15876-15886, July 2010.
doi:10.1364/OE.18.015876

19. Ergül, Ö. and L. Gürel, "Efficient solutions of metamaterial problems using a low-frequency multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 108, 81-99, 2010.
doi:10.2528/PIER10071104

20. Harrington, R. F., Field Computation by Moment Method, IEEE Press, NY, 1993.

21. Van de Hulst, H. C., Light Scattering by Small Particles, Reprinted by Dover Publication, NY, 1981.

22. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

23. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley, NY, 1983.

24. Mätzler, C., MATLAB function for Mie scattering and absorption, Research Report 2002-08, Institut für Angewandte Physik, Universitas Bernensis, 2002.

25. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

26. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E Stat. Nonlin. Soft Matter Phys., Vol. 64, No. 5, 056625, 2001.
doi:10.1103/PhysRevE.64.056625

27. Sheng, X. Q., J. M. Jin, J. M. Song, W. C. Chew, and C. C. Lu, "Solution of combined-field integral equation using multi-level fast multipole method for scattering by homogeneous bodies," IEEE Trans. Antennas Propagat., Vol. 46, No. 11, 1718-1726, Nov. 1998.
doi:10.1109/8.736628

28. Saad, Y. and M. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAMJ. Sci. Statist. Comput., Vol. 7, No. 15, 856-869, 1986.
doi:10.1137/0907058

29. Lloyd, T. W., J. M. Song, and M. Yang, "Numerical study of surface integral formulations for low-contrast objects," IEEE Antennas Wireless Propagat. Lett., Vol. 4, 482-485, 2005.
doi:10.1109/LAWP.2005.862062

30. Ylä-Oijala, P. and M. Taskinen, "Improving conditioning of electromagnetic surface integral equations using normalized field quantities," IEEE Trans. Antennas Propagat., Vol. 55, No. 1, January 2007.