1. Ja, S. J., Numerical study of microwave backscattering from breaking water waves, Ph.D. dissertation, Oklahoma State University, 1999.
2. West, J. C. and Z. Q. Zhao, "Electromagnetic modeling of multipath scattering from breaking water waves with rough faces," IEEE Trans. Geosci.Remote Sens., Vol. 40, No. 3, 583-592, 2002.
doi:10.1109/TGRS.2002.1000318 Google Scholar
3. West, J. C. and S. J. Ja, "Two-scale treatment of LGA scattering from spilling breaker water waves," Radio Sci., Vol. 37, No. 4, 1054-1110, 2002.
doi:10.1029/2001RS002517 Google Scholar
4. Du, Y. and B. Liu, "A numerical method for electromagnetic scattering from dielectric rough surfaces based on the stochastic second degree method," Progress In Electromagnetics Research, Vol. 97, 327-342, 2009.
doi:10.2528/PIER09092501 Google Scholar
5. Wetzel, L. B., "Electromagnetic scattering from the sea at low grazing angles ," Surface Waves and Fluxes, G. L. Geernaert and W. L. Plant (eds.), Vol. II, 109-171, Dordrecht, Kluwer, The Netherlands, 1990. Google Scholar
6. Trizna, D. B., "A model for Brewster angle damping and multipath e®ects on the microwave radar sea echo at low grazing angles," IEEE Trans. Geosci. Remote Sens., Vol. 35, No. 5, 1232-1244, 1997.
doi:10.1109/36.628790 Google Scholar
7. West, J. C., "Low-grazing-angle (LGA) sea-spike backscattering from plunging breaker crests," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 2, 523-526, 2002.
doi:10.1109/36.992830 Google Scholar
8. Plant, W. J., "A model for microwave doppler sea return at high incidence angles: Bragg scattering from bound, tilted waves," J. Geophys. Res., Vol. 102, No. 21, 131-21, 146, 1997. Google Scholar
9. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Artech House, Norwood, Massachusetts, 1986.
10. Bourlier, C., H. He, J. Chauveau, R. Hémon, and P. Pouliguen, "RCS of large bent waveguide ducts from a modal analysis combined with the Kirchhoff approximation," Progress In Electromagnetics Research, Vol. 88, 1-38, 2008.
doi:10.2528/PIER08101708 Google Scholar
11. Mittal, G. and D. Singh, "Critical Analysis of microwave specular scattering response on roughness parameter and moisture content for bare periodic rough surfaces and its retrieval," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.
doi:10.2528/PIER09091705 Google Scholar
12. Rice, S. O., "Reflection of electromagnetic wave from slightly rough surfaces," Communications in Pure and Applied Mathematics, Vol. 4, No. 2, 351-378, 1951.
doi:10.1002/cpa.3160040206 Google Scholar
13. Guo, L. X., Y. Liang, J. Li, and Z. S. Wu, "A high order integral spm for the conducting rough surface scattering with the tapered wave incidence-TE case ," Progress In Electromagnetics Research, Vol. 114, 333-352, 2011. Google Scholar
14. Wright, J. W., "A new model for sea clutter," IEEE Trans. Antennas Propag., Vol. 16, No. 2, 217-223, 1968.
doi:10.1109/TAP.1968.1139147 Google Scholar
15. Wu, Z. S., J. P. Zhang, L. X. Guo, and P. Zhou, "An improved two-scale model with volume scattering for the dynamic ocean surface ," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.
doi:10.2528/PIER08111803 Google Scholar
16. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603 Google Scholar
17. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855 Google Scholar
18. Yang, W., Z. Zhao, C. Qi, W. Liu, and Z. P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011. Google Scholar
19. Yang, W., Z. Q. Zhao, C. H. Qi, and Z. P. Nie, "Electromagnetic modeling of breaking waves at low grazing angles with adaptive higher order hierarchical legendre basis functions," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 1, 346-352, 2011.
doi:10.1109/TGRS.2010.2052817 Google Scholar
20. Wang, P., Y. Yao, and M. P. Tulin, "An efficient numerical tank for nonlinear water waves, based on the multi-subdomain approach with BEM," Int. J. Numer. Meth. Fluids, Vol. 20, No. 10, 1315-1336, 1995.
doi:10.1002/fld.1650201203 Google Scholar
21. West, J. C., Z. Q. Zhao, X. N. Liu, and J. H. Duncan, "LGA scattering from measured breaking water waves: Extension to jetting surfaces," IEEE 2001 International Geoscience and Remote Sensing Symposium, IGARSS'01, Vol. 5, 2454-2456, 2001. Google Scholar
22. Li, Y. Z. and J. C. West, "Low-grazing-angle scattering from 3-D breaking water wave crests," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 8, 2093-2101, 2006.
doi:10.1109/TGRS.2006.872129 Google Scholar
23. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Am., Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188 Google Scholar
24. Zhao, Z. Q. and J. C. West, "Low-grazing-angle microwave scattering from a three-dimensional spilling breaker crest: A numerical investigation," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 2, 286-294, 2005.
doi:10.1109/TGRS.2004.840644 Google Scholar
25. Haupt, R. L. and V. V. Liepa, "Synthesis of tapered resistive strips," IEEE Trans. Antennas Propag., Vol. 35, No. 11, 1217-1225, 1987.
doi:10.1109/TAP.1987.1143998 Google Scholar