1. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.
2. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, Norwood, 1993.
3. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, John Wiley and Sons, Inc., New York, 2007.
doi:10.1002/0470109017
4. Macdonald , H. M., "The effect produced by an obstacle on a train of electric waves," Phil. Trans. Royal Soc. London, Series A, Math. Phys. Sci., Vol. 212, 299-337, 1913.
doi:10.1098/rsta.1913.0010 Google Scholar
5. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Trans. Antennas Propag., Vol. 16, No. 6, 767-769, Nov. 1968.
doi:10.1109/TAP.1968.1139296 Google Scholar
6. Gordon, W. B., "Far-field approximations to the Kirchhoff-Helmholtz representation of scattered fields," IEEE Trans. Antennas Propag., Vol. 23, No. 4, 590-592, Jul. 1975.
doi:10.1109/TAP.1975.1141105 Google Scholar
7. Gordon, W. B., "High-frequency approximations to the physical optics scattering integral ," IEEE Trans. Antennas Propag., Vol. 42, No. 3, 427-432, Mar. 1994.
doi:10.1109/8.280733 Google Scholar
8. Bolukbas, D. and A. A. Ergin, "A radon transform interpretation of the physical optics integral," Microw. Opt. Tech. Lett., Vol. 44, No. 3, 284-288, Feb. 2005.
doi:10.1002/mop.20612 Google Scholar
9. Serim, H. A. and A. A. Ergin, "Computation of the physical optics integral on NURBS surfaces using a radon transform interpretation," IEEE Antennas Wireless Propag. Lett., Vol. 7, 70-73, 2008.
doi:10.1109/LAWP.2008.915811 Google Scholar
10. Ulku, H. A. and A. A. Ergin, "Radon transform interpretation of the physical optics integral and application to near and far field acoustic scattering problems," IEEE Antennas and Propagation Society International Symposium, APSURSI, 2010. Google Scholar
11. Infante, L. and M. Stefano, "Near-field line-integral representation of the Kirchhoff-type aperture radiation for parabolic reflector," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 273-276, 2003.
doi:10.1109/LAWP.2003.820685 Google Scholar
12. Burkholder, R. J. and T. H. Lee, "Adaptive sampling for fast physical optics numerical integration," IEEE Trans. Antennas Propag., Vol. 53, No. 5, 1843-1845, May 2005.
doi:10.1109/TAP.2005.846813 Google Scholar
13. Conde, O. M., J. Perez, and M. F. Catedra, "Stationary phase method application for the analysis of radiation of complex 3-D conducting structures," IEEE Trans. Antennas Propag., Vol. 49, No. 5, 724-731, May 2001.
doi:10.1109/8.929626 Google Scholar
14. Catedra, M. F., C. Delgado, S. Luceri, O. G. Blanco, and F. S. Adana, "Physical optics analysis of multiple interactions in large scatters using current modes," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 985-994, Mar. 2006.
doi:10.1109/TAP.2006.869893 Google Scholar
15. Delgado, C., J. M. Gomez, and M. F. Catedra, "Analytical field calculation involving current modes and quadratic phase expressions," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 233-240, Jan. 2007.
doi:10.1109/TAP.2006.888470 Google Scholar
16. Catedra, M. F., C. Delgado, and I. G. Diego, "New physical optics approach for an efficient treatment of multiple bounces in curved bodies defined by an impedance boundary condition," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 728-736, Mar. 2008.
doi:10.1109/TAP.2008.916938 Google Scholar
17. Vico, F., M. Ferrando, and A. Valero, "A new fast physical optics for smooth surfaces by means of a numerical theory of diffraction ," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 773-789, Mar. 2010.
doi:10.1109/TAP.2009.2039308 Google Scholar
18. Carluccio, G., M. Albani, and P. H. Pathak, "Uniform asymptotic evaluation of surface integrals with polygonal integration domains in terms of UTD transition functions ," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1155-1163, Apr. 2010.
doi:10.1109/TAP.2010.2041171 Google Scholar
19. Albani, M., G. Carluccio, and P. H. Pathak, "Uniform ray description for the PO scattering by vertices in curved surface with curvilinear edges and relatively general boundary conditions," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1587-1596, May 2011.
doi:10.1109/TAP.2011.2123062 Google Scholar
20. Harrington, R., Field Computation by Moment Method, Macmillan, New York, 1968.
21. Borovikov, V. A., Uniform Stationary Phase Method, Institution of Electrical Engineers, London, 1994.
22. James, G. L., "Geometrical Theory of Diffraction for Electromagnetic Waves," Peregrinus, Stevenage, 1980. Google Scholar
23. Langdon, S. and S. N. Chandler-Wilde, "A wavenumber independent boundary element method for an acoustic scattering problem," SIAM J. Numer. Anal., Vol. 43, No. 6, 2450-2477, 2006.
doi:10.1137/S0036142903431936 Google Scholar
24. Bruno, O. P., C. A. Geuzaine, J. A. Monro, Jr., and F. Reitich, "Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: The convex case," Phil. Trans. Royal Soc. London, Series A, Vol. 362, 629-645, 2004.
doi:10.1098/rsta.2003.1338 Google Scholar
25. Geuzaine, C., O. Bruno, and F. Reitich, "On the O(1) solution of multiple-scattering problems," IEEE Trans. Magn., Vol. 41, No. 5, 1498-1491, May 2005.
doi:10.1109/TMAG.2005.844567 Google Scholar
26. Bruno, O. P. and C. A. Geuzaine, "An O(1) integration scheme for three-dimensional surface scattering problems," J. Comp. Appl. Math., Vol. 204, No. 2, 463-476, 2007.
doi:10.1016/j.cam.2006.02.050 Google Scholar
27. Engquist, B., E. Fatemi, and S. Osher, "Numerical solution of the high frequency asymptotic expansion for the scalar wave equation," J. Comput. Phys., Vol. 120, No. 1, 145-155, Aug. 1995.
doi:10.1006/jcph.1995.1154 Google Scholar
28. Engquist, B. and O. Runborg, "Multi-Phase computations in geometrical optics," J. Comp. Appl. Math., Vol. 74, No. 1-2, 175-192, 1996.
doi:10.1016/0377-0427(96)00023-4 Google Scholar
29. Engquist, B. and O. Runborg, "Computational high frequency wave propagation," Acta Numerica, Vol. 12, 181-266, 2003.
doi:10.1017/S0962492902000119 Google Scholar
30. Iserles, A. and S. P. NΦsett, "Quadrature methods for multivariate highly oscillatory integrals using derivatives," Math. Comp., Vol. 75, No. 255, 1233-1258, 2006.
doi:10.1090/S0025-5718-06-01854-0 Google Scholar
31. Iserles, A. and S. P. NΦsett, "On the computation of highly oscillatory multivariate integrals with critical points," BIT, Vol. 46, No. 3, 549-566, 2006.
doi:10.1007/s10543-006-0071-2 Google Scholar
32. Iserles, A. and S. P. NΦsett, "From high oscillation to rapid approximation III: Multivariate expansions," IMA J. Num. Anal., Vol. 29, No. 4, 882-916, 2009.
doi:10.1093/imanum/drn020 Google Scholar
33. Iserles, A. and D. Levin, "Asymptotic expansion and quadrature of composite highly oscillatory integrals," Math. Comp., Vol. 80, No. 273, 279-296, 2011.
doi:10.1090/S0025-5718-2010-02386-5 Google Scholar
34. Huybrechs, D. and S. Vandewalle, "The construction of cubature rules for multivariate highly oscillatory integrals," Math. Comp., Vol. 76, No. 260, 1955-1980, 2007.
doi:10.1090/S0025-5718-07-01937-0 Google Scholar
35. Huybrechs, D. and S. Vandewalle, "A sparse discretisation for integral equation formulations of high frequency scattering problems," SIAM J. Sci. Comput., Vol. 29, No. 6, 2305-2328, 2007.
doi:10.1137/060651525 Google Scholar
36. Asheim, A. and D. Huybrechs, "Asymptotic analysis of numerical steepest descent with path approximations," Found. Comput. Math., Vol. 10, No. 6, 647-671, 2010.
doi:10.1007/s10208-010-9068-y Google Scholar
37. Asheim, A., "Numerical methods for highly oscillatory problems,", Ph.D. Dissertation,-Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. Google Scholar
38. Wong, R., Asymptotic Approximations of Integrals, New York, 2001.
39. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651 Google Scholar
40. Lee, S. W. and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," IEEE Trans. Antennas Propag., Vol. 24, No. 1, 25-34, Jan. 1976.
doi:10.1109/TAP.1976.1141283 Google Scholar
41. Ikuno, H. and M. Nishimoto, "Calculation of transfer functions of three-dimensional indented objects by the physical optics approximation combined with the method of stationary phase," IEEE Trans. Antennas Propag., Vol. 39, No. 5, 585-590, May 1991.
doi:10.1109/8.81484 Google Scholar
42. Jones, D. S. and M. Kline, "Asymptotic expansion of multiple integrals and the method of stationary phase," J. Math. Phys., Vol. 37, 1-28, 1958. Google Scholar
43. Chako, N., "Asymptotic expansions of double and multiple integral," J. Inst. Math. Applic., Vol. 1, No. 4, 372-422, 1965.
doi:10.1093/imamat/1.4.372 Google Scholar
44. Davis, C. P. and W. C. Chew, "Frequency-independent scattering fom a flat strip with TEz-polarized fields," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1008-1016, Apr. 2008.
doi:10.1109/TAP.2008.919196 Google Scholar
45. Sha, W. E. I. and W. C. Chew, "High frequency scattering by an impenetrable sphere," Progress In Electromagnetics Research, Vol. 97, 291-325, 2009.
doi:10.2528/PIER09100102 Google Scholar
46. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Norwood, MA, Dover, 1972.
47. Josef, S. and B. Roland, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.