Vol. 128
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-05
A Study on Millimeter-Wave Imaging of Concealed Objects: Application Using Back-Projection Algorithm
By
Progress In Electromagnetics Research, Vol. 128, 457-477, 2012
Abstract
Millimeter-wave (MMW) imaging is a powerful tool for the detection of objects concealed under clothing. Several factors including different kinds of objects, variety of covering materials and their thickness, accurate imaging of near-field scattered data affect the success of detection. To practice with such considerations, this paper presents the two-dimensional (2D) images of different targets hidden under various fabric sheets. The W-band inverse synthetic aperture radar (ISAR) data of various target-covering situations are acquired and imaged by applying both the focusing operator based inversion algorithm and the spherical back-projection algorithm. Results of these algorithms are demonstrated and compared to each other to assess the performance of the MMW imaging in detecting the concealed objects of both metallic and dielectric types.
Citation
Sevket Demirci, Harun Cetinkaya, Enes Yigit, Caner Özdemir, and Alexey A. Vertiy, "A Study on Millimeter-Wave Imaging of Concealed Objects: Application Using Back-Projection Algorithm," Progress In Electromagnetics Research, Vol. 128, 457-477, 2012.
doi:10.2528/PIER12050210
References

1. Appleby, R. and R. N. Anderton, "Millimeter-wave and submillimeter-wave imaging for security and surveillance," Proc. IEEE, Vol. 95, No. 8, 1683-1690, Aug. 2007.
doi:10.1109/JPROC.2007.898832        Google Scholar

2. Appleby, R., D. A. Wikner, R. Trebits, and J. L. Kurtz, "Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz," Proc. SPIE, Vol. 5077, 1-6, 2003.
doi:10.1117/12.488003        Google Scholar

3., The Autonomous Approach Landing Capability,http://www.baesystems.com/BAEProd/groups/public/documents/bae publication/bae pdf eis autonomous.pdf..
doi:10.1117/12.488003        Google Scholar

4., Navtech W800 Traffc Sensor, http://www.navtechradar.com/Documents/Highways/W800-Traffc%20both-nav%20rad.pdf..
doi:10.1117/12.488003        Google Scholar

5. Fetterman, M. R., J. Grata, G. Jubic, W. L. Kiser, Jr., and A. Visnansky, "Simulation, acquisition and analysis of passive millimeter-wave images in remote sensing applications," Optics Express, Vol. 16, No. 25, 20503-20515, 2008.
doi:10.1364/OE.16.020503        Google Scholar

6. Hua-Mei, C., L. Seungsin, R. M. Rao, M. A. Slamani, and P. K. Varshney, "Imaging for concealed weapon detection:A tutorial overview of development in imaging sensors and processing," IEEE Signal Processing Magazine, Vol. 22, No. 2, 52-61, 2005.
doi:10.1109/MSP.2005.1406480        Google Scholar

7. Oka, S., H. Togo, N. Kukutsu, and T. Nagatsuma, "Latest trends in millimeter-wave imaging technology," Progress In Electromagnetics Research Letters, Vol. 1, 197-204, 2008.
doi:10.2528/PIERL07120604        Google Scholar

8. Gumbmann, F., P. Tran, A. Cenanovic, and S. Methfessel, "Millimeter-wave imaging concepts: Synthetic aperture radar (SAR) and digital beam forming (DBF)," Frequenz, Vol. 63, No. 5-6, 106-110, 2009.
doi:10.1515/FREQ.2009.63.5-6.106        Google Scholar

9. Yeom, S., D. Lee, J. Son, M. Jung, Y. Jang, S. Jung, and S. Lee, "Real-time outdoor concealed object detection with passive millimeter wave imaging," Optics Express, Vol. 19, No. 3, 2530-2536, 2011.
doi:10.1364/OE.19.002530        Google Scholar

10. Sato, H., K. Sawaya, K. Mizuno, J. Uemura, M. Takeda,J. Takahashi, K. Yamada, K. Morichika, T. Hasegawa, H. Hirai,H. Niikura, T. Matsuzaki, S. Kato, and J. Nakada, "Passive millimeter-wave imaging for security and safety applications," Proc. SPIE, 76720, 2010.        Google Scholar

11. Essen, H., H. Fuchs, M. Hagelen, S. Stanko, D. Notel,S. Erukulla, J. Huck, M. Schlechtweg, and A. Tessmann, "Concealed weapon detection with active and passive millimeter-wave sensors, two approaches," German Microwave Conference, Karlsruhe, Germany, Mar. 2006.        Google Scholar

12. Yeom, S., D. Lee, H. Lee, J. Son, and V. P. Gushin, "Distance estimation of concealed objects with stereoscopic passive millimeter-wave imaging," Progress In Electromagnetics Research, Vol. 115, 399-407, 2011.        Google Scholar

13. Grossman, E. N. and A. J. Miller, "Active millimeter-wave imaging for concealed weapons detection," Proc. SPIE,Conference of Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, Vol. 5077, 62-70, 2003.        Google Scholar

14. Jaeger, I., L. Zhang, J. Stiens, H. Sahli, and R. Vounckx, "Millimeter wave inspection of concealed objects," Microwave and Optical Technology Letters, Vol. 49, No. 11, 2733-2737, 2007.
doi:10.1002/mop.22870        Google Scholar

15. Tan, W., W. Hong, Y. Wang, and Y. Wu, "A novel spherical-wave three-dimensional imaging algorithm for microwave cylindrical scanning geometries," Progress In Electromagnetics Research, Vol. 111, 43-70, 2011.
doi:10.2528/PIER10100307        Google Scholar

16. Manfred, H., B. Gunnar, and E. Helmut, "Millimetre wave near-field SAR scanner for concealed weapon detection," Proceedings of EUSAR, 151-154, Friedrichshafen, Germany, 2008.        Google Scholar

17. Harmer, S. W., S. E. Cole, N. J. Bowring, N. D. Rezgui, and D. Andrews, "On body concealed weapon detection using a phased antenna array," Progress In Electromagnetics Research, Vol. 124, 187-210, 2012.
doi:10.2528/PIER11112105        Google Scholar

18. Qi, F., V. Tavakol, D. Schreurs, and B. K. J. C. Nauwelaers, "Limitations of approximations towards fourier optics for indoor active millimeter wave imaging systems," Progress In Electromagnetics Research, Vol. 109, 245-262, 2010.
doi:10.2528/PIER10080510        Google Scholar

19. Tan, W., W. Hong, Y. Wang, and Y. Wu, "A novel spherical-wave three-dimensional imaging algorithm for microwave cylindrical scanning geometries," Progress In Electromagnetics Research, Vol. 111, 43-70, 2011.
doi:10.2528/PIER10100307        Google Scholar

20. Li, S., B. Ren, H.-J. Sun, W. Hu, and X. Lv, "Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging," Progress In Electromagnetics Research, Vol. 124, 35-53, 2012.
doi:10.2528/PIER11112406        Google Scholar

21. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, Sep. 2001.
doi:10.1109/22.942570        Google Scholar

22. Zhang, L., "Millimetre wave imaging for concealed target detection,", Ph.D. Thesis, University of London, 2012.        Google Scholar

23. Detlefsen, J., A. Dallinger, S. Huber, and S. Schelkshorn, "Effective reconstruction approaches to millimeter-wave imaging of humans," Proceedings of the URSI General Assembly, New Delhi, India, Oct. 23-29, 2005.        Google Scholar

24. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Near-field three-dimensional radar imaging techniques and applications," Applied Optics, Vol. 49, No. 19, E83-E93, 2010.
doi:10.1364/AO.49.000E83        Google Scholar

25. Bertl, S., A. Dallinger, and J. Detlefsen, "Broadband circular interferometric millimetre-wave ISAR for threat detection," Advances in Radio Science, Vol. 5, 147-151, 2007.
doi:10.5194/ars-5-147-2007        Google Scholar

26. Bertl, S., A. Dallinger, and J. Detlefsen, "Bistatic extension for coherent MMW-ISAR-imaging of objects and humans," Advances in Radio Science, Vol. 6, 63-66, 2008.
doi:10.5194/ars-6-63-2008        Google Scholar

27. Bertl, S., A. Dallinger, and J. Detlefsen, "Interferometric focusing for the imaging of humans," IET Radar Sonar & Navigation, Vol. 4, No. 3, 457-463, 2010.
doi:10.1049/iet-rsn.2009.0029        Google Scholar

28. Fortuny, J. and J. M. Lopez-Sanchez, "Extension of the 3-D range migration algorithm to cylindrical and spherical scanning geometries," IEEE Trans. on Antennas and Propagation, Vol. 49, No. 10, 1434-1444, 2001.
doi:10.1109/8.954932        Google Scholar

29. Qi, Y. L., W. Tan, Y. Wang, W. Hong, and Y. Wu, "3D bistatic omega-k imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry," Progress In Electromagnetics Research, Vol. 121, 409-431, 2011.
doi:10.2528/PIER11090205        Google Scholar

30. Broquetas, A., J. Palau, L. Jofre, and A. Cardama, "Spherical wave near-field imaging and radar cross-section measurement," IEEE Trans. on Antennas and Propagation, Vol. 46, No. 5, 730-735, 1998.
doi:10.1109/8.668918        Google Scholar

31. Munson, D. C., J. D. O'Brien, and W. K. Jenkins, "A tomographic formulation of spotlight-mode synthetic aperture radar," Proc. IEEE, Vol. 71, No. 8, 917-925, 1983.
doi:10.1109/PROC.1983.12698        Google Scholar

32. Bauck, J. L. and W. K. Jenkins, "Tomographic processing of spot-light mode synthetic aperture radar signals with compensation for wavefront curvature," International Conference on Acoustics,Speech, and Signal Processing, ICASSP-88, Vol. 2, 1192-1195, 1988.
doi:10.1109/ICASSP.1988.196812        Google Scholar

33. Mersereau, R. and A. Oppenheim, "Digital reconstruction of multidimensional signals from their projections," Proc. IEEE, Vol. 62, No. 10, 1319-1338, 1974.
doi:10.1109/PROC.1974.9625        Google Scholar

34. Luminati, J. E., "Wide-angle multistatic synthetic aperture radar:Focused image formation and aliasing artifact mitigation,", Ph.D. Thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, USA, 2005.        Google Scholar

35. Ozdemir, C., Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms, 156, Wiley-Interscience, 2012.