1. Granet, C., G. L. James, R. Bolton, and G. Moorey, "A smooth-walled spline-profile horn as an alternative to the corrugated horn for wide band millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 52, No. 3, 848-854, Mar. 2004.
doi:10.1109/TAP.2004.825156 Google Scholar
2. Yin, X. H. and S. C. Shi, "A simple design method of multimode horns," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 455-459, Jan. 2005.
doi:10.1109/TAP.2004.838748 Google Scholar
3. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-effciency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806 Google Scholar
4. Carpenter, E., "A dual-band corrugated feed horn," Proc. IEEE AP-S Int. Symp. Dig., Vol. 18, 213-216, Jun. 1980. Google Scholar
5. Kishk, A. A. and C. S. Lim, "Comparative analysis between conical and Gaussian profiled horn antennas," Progress In Electromagnetics Research, Vol. 38, 147-166, 2002.
doi:10.2528/PIER02052406 Google Scholar
6. Lucci, L., R. Nesti, G. Pelosi, and S. Selleri, "Phase centre optimization in profiled corrugated circular horns with parallel genetic algorithms," Progress In Electromagnetics Research, Vol. 16, 127-142, 2004.
doi:10.2528/PIER03090501 Google Scholar
7. Clark, P. R. and G. L. James, "Ultra-wideband hybrid-mode feeds," Electron. Lett., Vol. 31, No. 23, 1968-1969, 1995.
doi:10.1049/el:19951364 Google Scholar
8. Chung, J. Y., "Ultra-wideband dielectric-loaded horn antenna with dual-linear polarization capability," Progress In Electromagnetics Research, Vol. 102, 397-411, 2010.
doi:10.2528/PIER10022703 Google Scholar
9. Xu, O., "Diagonal horn Gaussian effciency enhancement by dielectric loading for submillimeter wave application at 150 GHz," Progress In Electromagnetics Research, Vol. 114, 177-194, 2011. Google Scholar
10. Rolland, A., A. V. Boriskin, C. Person, C. Quendo, L. L. Coq, and R. Sauleau, "Lens-corrected axis-symmetrical shaped horn antenna in metallized foam with improved bandwidth," IEEE Antennas Wireless Propag. Lett., Vol. 11, 57-60, 2012.
doi:10.1109/LAWP.2011.2182596 Google Scholar
11. Stephen, D. T., "A multiband antenna for satellite communications on the move," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 2862-2868, Oct. 2006. Google Scholar
12. Teng, J., S. Yang, and Z. Nie, "Study on multiple frequencies and polarizations feed technique in luneberg lens antenna," Intelligent Signal Processing and Communication Systems (ISPACS) Int. Symp. Dig., Chengdu, Dec. 2010. Google Scholar
13. Bhattacharyya, A., R. Eliassi, C. Hansen, and P. Metzen, "Multiband feed using coaxial configuration," Int. J. RF Microw. C. E., Vol. 21, No. 2, 127-136, 2011.
doi:10.1002/mmce.20489 Google Scholar
14. Tai, C. T., "The electromagnetic theory of the spherical luneberg lens," Appl. Sci. Res., Section B, Vol. 7, 113-130, 1958.
doi:10.1007/BF02921903 Google Scholar
15. Sanford, J. R., "Scattering by spherically stratified microwave lens antennas," IEEE Trans. Antennas Propag., Vol. 42, No. 5, 690-698, May 1994.
doi:10.1109/8.299568 Google Scholar
16. Mosallaei, H. and Y. Rahmat-Samii, "Non-uniform Lüneburg and two-shell lens antennas: Radiation characteristics and design optimization," IEEE Trans. Antennas Propag., Vol. 49, No. 1, 60-69, Jan. 2001.
doi:10.1109/8.910531 Google Scholar
17. Fuchs, B., R. Golubovic, A. K. Skrivervik, and J. R. Mosig, "Spherical lens antenna designs with particle swarm optimization," Microw. Opt. Techn. Lett., Vol. 52, No. 7, 1655-1659, Jul. 2010.
doi:10.1002/mop.25278 Google Scholar
18. Zhong, M., S. Yang, and Z. Nie, "Optimization of a luneberg lens antenna using the differential evolution algorithm," Proc. IEEE AP-S Int Symp. Dig., San Diego, CA, Jul. 2008. Google Scholar
19. Huang, M., S. Yang, W. Xiong, and Z. Nie, "Design and optimization of spherical lens antennas including practical feed models," Progress In Electromagnetics Research, Vol. 120, 355-370, 2011. Google Scholar
20. Fuchs, B., L. Le Coq, O. Lafond, S. Rondineau, and M. Himdi, "Design optimization of multishell Luneberg lenses," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 283-289, Feb. 2007.
doi:10.1109/TAP.2006.889849 Google Scholar
21. Fuchs, B., S. Palud, L. Le Coq, O. Lafond, M. Himdi, and S. Rondineau, "Scattering of spherically and hemispherically stratified lenses fed by any real source," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 450-460, Feb. 2008.
doi:10.1109/TAP.2007.915458 Google Scholar
22. Boriskin, A. V., A. Vorobyov, and R. Sauleau, "Two-shell radially symmetric dielectric lenses as low-cost analogs of the Lüneburg lens," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 3089-3093, Aug. 2011.
doi:10.1109/TAP.2011.2158793 Google Scholar
23. Nikolic, N., J. S. Kot, and S. S. Vinogradov, "Scattering by a Lüneburg lens partially covered by a metallic cap," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 549-563, 2007.
doi:10.1163/156939307780616856 Google Scholar
24. Vinogradov, S. S., P. D. Smith, J. S. Kot, and N. Nikolic, "Radar cross-section studies of spherical lens reflectors," Progress In Electromagnetics Research, Vol. 72, 325-337, 2007.
doi:10.2528/PIER07031206 Google Scholar
25. Maruyama, T., K. Yamamori, and Y. Kuwahara, "Design of multibeam dielectric lens antennas by multiobjective optimization," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 57-63, 2009.
doi:10.1109/TAP.2008.2009694 Google Scholar
26. Carpenter, M. P., et al. "Lens of gradient dielectric constant and methods of production,", US Patent 6433936 B1, 2001. Google Scholar
27. Rondineau, S., M. Himdi, and J. Sorieux, "A sliced spherical Lüneburg lens," IEEE Antennas Wireless Propag. Lett., Vol. 2, 163-166, 2003.
doi:10.1109/LAWP.2003.819045 Google Scholar
28. Wang, G., Y. Gong, and H. Wang, "On the size of left-handed material lens for near-field target detection by focus scanning," Progress In Electromagnetics Research, Vol. 87, 345-361, 2008.
doi:10.2528/PIER08101902 Google Scholar
29. Andrés-García, B. and L. E. García-Muñoz, "Filtering lens structure based on SRRs in the low THz band," Progress In Electromagnetics Research, Vol. 93, 71-90, 2009.
doi:10.2528/PIER09040105 Google Scholar
30. Ma, H. F., X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T.-J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett., Vol. 95, 094107, 2009. Google Scholar
31. Ma, H. F., X. Chen, X. M. Yang, W. X. Jiang, and T.-J. Cui, "Design of multibeam scanning antennas with high gains and low sidelobes using gradient-index metamaterials," J. Appl. Phys., Vol. 107, 014902, 2010. Google Scholar
32. Dou, W. B., Z. L. Sun, and X. Q. Tan, "Fields in the focal space of symmetrical hyperbolic focusing lens," Progress In Electromagnetics Research, Vol. 20, 213-226, 1998.
doi:10.2528/PIER98021300 Google Scholar
33. Zhang, Z. and W. Dou, "Binary diffractive small lens array for Thz imaging system," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 177-187, 2011.
doi:10.1163/156939311794362821 Google Scholar
34. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702 Google Scholar
35. Lee, Y. H., B. J. Cahill, S. J. Porter, and A. C. Marvin, "A novel evolutionary learning technique for multi-objective array antenna optimization," Progress In Electromagnetics Research, Vol. 48, 125-144, 2004.
doi:10.2528/PIER04012202 Google Scholar
36. Zhang, Q. and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Trans. Evol. Comput., Vol. 11, No. 6, 712-731, Dec. 2007.
doi:10.1109/TEVC.2007.892759 Google Scholar
37. Pal, S., S. Das, and A. Basak, "Design of time-modulated linear arrays with a multi-objective optimization approach," Progress In Electromagnetics Research B, Vol. 23, 83-107, 2010.
doi:10.2528/PIERB10052401 Google Scholar
38. Chen, Y., S. Yang, and Z. Nie, "Improving conflicting specifications of time-modulated antenna arrays by using a multiobjective evolutionary algorithm," Int. J. Numer. Model. El., Jul. 2011. Google Scholar
39. Goudos, S. K., K. Siakavara, E. E. Vafiadis, and J. N. Sahalos, "Pareto optimal Yagi-Uda antenna design using multi-objective differential evolution," Progress In Electromagnetics Research, Vol. 105, 231-251, 2010.
doi:10.2528/PIER10052302 Google Scholar