Vol. 129
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-21
Multiobjective Optimization and Design of a Luneberg Lens Antenna with Multiband Multi-Polarized Feed-System
By
Progress In Electromagnetics Research, Vol. 129, 251-269, 2012
Abstract
A general multiobjective optimization and design procedure of a Luneberg lens antenna (LLA) with a compact multiband multi-polarized feed-system for a broadband satellite communication terminal is presented. The LLA utilizes a compact multiband feed horn, consisting of an inner dielectric loaded circular horn for the K/Ka-band (dual-circular polarization) and a coaxial waveguide with axially corrugated flange for the Ku-band (dual-linear polarization). Measurements show good agreement with simulations. Moreover, an efficient multiobjective evolutionary algorithm based on decomposition (MOEA/D) with differential evolution operator and objective normalization technique is firstly coupled with the vector spherical wave function expansions (VSWE) for the optimal design of a 7-layer 650 mm diameter LLA, which provides higher aperture efficiency at Ku/K/Ka-band simultaneously. The frequency dependence of the LLA is also investigated. Finally, the gain and sidelobe level of a 5-layer design are jointly evaluated and compared with previous works. The proposed design procedure provides much better radiation performances and greater design freedom to the designers, as a group of Pareto-optimal LLA solutions can be obtained with just one simulation.
Citation
Ming Huang Shiwen Yang Jinghua Teng Quanjiang Zhu Zai-Ping Nie , "Multiobjective Optimization and Design of a Luneberg Lens Antenna with Multiband Multi-Polarized Feed-System," Progress In Electromagnetics Research, Vol. 129, 251-269, 2012.
doi:10.2528/PIER12051006
http://www.jpier.org/PIER/pier.php?paper=12051006
References

1. Granet, C., G. L. James, R. Bolton, and G. Moorey, "A smooth-walled spline-profile horn as an alternative to the corrugated horn for wide band millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 52, No. 3, 848-854, Mar. 2004.
doi:10.1109/TAP.2004.825156

2. Yin, X. H. and S. C. Shi, "A simple design method of multimode horns," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 455-459, Jan. 2005.
doi:10.1109/TAP.2004.838748

3. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-effciency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

4. Carpenter, E., "A dual-band corrugated feed horn," Proc. IEEE AP-S Int. Symp. Dig., Vol. 18, 213-216, Jun. 1980.

5. Kishk, A. A. and C. S. Lim, "Comparative analysis between conical and Gaussian profiled horn antennas," Progress In Electromagnetics Research, Vol. 38, 147-166, 2002.
doi:10.2528/PIER02052406

6. Lucci, L., R. Nesti, G. Pelosi, and S. Selleri, "Phase centre optimization in profiled corrugated circular horns with parallel genetic algorithms," Progress In Electromagnetics Research, Vol. 16, 127-142, 2004.
doi:10.2528/PIER03090501

7. Clark, P. R. and G. L. James, "Ultra-wideband hybrid-mode feeds," Electron. Lett., Vol. 31, No. 23, 1968-1969, 1995.
doi:10.1049/el:19951364

8. Chung, J. Y., "Ultra-wideband dielectric-loaded horn antenna with dual-linear polarization capability," Progress In Electromagnetics Research, Vol. 102, 397-411, 2010.
doi:10.2528/PIER10022703

9. Xu, O., "Diagonal horn Gaussian effciency enhancement by dielectric loading for submillimeter wave application at 150 GHz," Progress In Electromagnetics Research, Vol. 114, 177-194, 2011.

10. Rolland, A., A. V. Boriskin, C. Person, C. Quendo, L. L. Coq, and R. Sauleau, "Lens-corrected axis-symmetrical shaped horn antenna in metallized foam with improved bandwidth," IEEE Antennas Wireless Propag. Lett., Vol. 11, 57-60, 2012.
doi:10.1109/LAWP.2011.2182596

11. Stephen, D. T., "A multiband antenna for satellite communications on the move," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 2862-2868, Oct. 2006.

12. Teng, J., S. Yang, and Z. Nie, "Study on multiple frequencies and polarizations feed technique in luneberg lens antenna," Intelligent Signal Processing and Communication Systems (ISPACS) Int. Symp. Dig., Chengdu, Dec. 2010.

13. Bhattacharyya, A., R. Eliassi, C. Hansen, and P. Metzen, "Multiband feed using coaxial configuration," Int. J. RF Microw. C. E., Vol. 21, No. 2, 127-136, 2011.
doi:10.1002/mmce.20489

14. Tai, C. T., "The electromagnetic theory of the spherical luneberg lens," Appl. Sci. Res., Section B, Vol. 7, 113-130, 1958.
doi:10.1007/BF02921903

15. Sanford, J. R., "Scattering by spherically stratified microwave lens antennas," IEEE Trans. Antennas Propag., Vol. 42, No. 5, 690-698, May 1994.
doi:10.1109/8.299568

16. Mosallaei, H. and Y. Rahmat-Samii, "Non-uniform Lüneburg and two-shell lens antennas: Radiation characteristics and design optimization," IEEE Trans. Antennas Propag., Vol. 49, No. 1, 60-69, Jan. 2001.
doi:10.1109/8.910531

17. Fuchs, B., R. Golubovic, A. K. Skrivervik, and J. R. Mosig, "Spherical lens antenna designs with particle swarm optimization," Microw. Opt. Techn. Lett., Vol. 52, No. 7, 1655-1659, Jul. 2010.
doi:10.1002/mop.25278

18. Zhong, M., S. Yang, and Z. Nie, "Optimization of a luneberg lens antenna using the differential evolution algorithm," Proc. IEEE AP-S Int Symp. Dig., San Diego, CA, Jul. 2008.

19. Huang, M., S. Yang, W. Xiong, and Z. Nie, "Design and optimization of spherical lens antennas including practical feed models," Progress In Electromagnetics Research, Vol. 120, 355-370, 2011.

20. Fuchs, B., L. Le Coq, O. Lafond, S. Rondineau, and M. Himdi, "Design optimization of multishell Luneberg lenses," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 283-289, Feb. 2007.
doi:10.1109/TAP.2006.889849

21. Fuchs, B., S. Palud, L. Le Coq, O. Lafond, M. Himdi, and S. Rondineau, "Scattering of spherically and hemispherically stratified lenses fed by any real source," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 450-460, Feb. 2008.
doi:10.1109/TAP.2007.915458

22. Boriskin, A. V., A. Vorobyov, and R. Sauleau, "Two-shell radially symmetric dielectric lenses as low-cost analogs of the Lüneburg lens," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 3089-3093, Aug. 2011.
doi:10.1109/TAP.2011.2158793

23. Nikolic, N., J. S. Kot, and S. S. Vinogradov, "Scattering by a Lüneburg lens partially covered by a metallic cap," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 549-563, 2007.
doi:10.1163/156939307780616856

24. Vinogradov, S. S., P. D. Smith, J. S. Kot, and N. Nikolic, "Radar cross-section studies of spherical lens reflectors," Progress In Electromagnetics Research, Vol. 72, 325-337, 2007.
doi:10.2528/PIER07031206

25. Maruyama, T., K. Yamamori, and Y. Kuwahara, "Design of multibeam dielectric lens antennas by multiobjective optimization," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 57-63, 2009.
doi:10.1109/TAP.2008.2009694

26. Carpenter, M. P., et al., "Lens of gradient dielectric constant and methods of production,", US Patent 6433936 B1, 2001.

27. Rondineau, S., M. Himdi, and J. Sorieux, "A sliced spherical Lüneburg lens," IEEE Antennas Wireless Propag. Lett., Vol. 2, 163-166, 2003.
doi:10.1109/LAWP.2003.819045

28. Wang, G., Y. Gong, and H. Wang, "On the size of left-handed material lens for near-field target detection by focus scanning," Progress In Electromagnetics Research, Vol. 87, 345-361, 2008.
doi:10.2528/PIER08101902

29. Andrés-García, B. and L. E. García-Muñoz, "Filtering lens structure based on SRRs in the low THz band," Progress In Electromagnetics Research, Vol. 93, 71-90, 2009.
doi:10.2528/PIER09040105

30. Ma, H. F., X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T.-J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett., Vol. 95, 094107, 2009.

31. Ma, H. F., X. Chen, X. M. Yang, W. X. Jiang, and T.-J. Cui, "Design of multibeam scanning antennas with high gains and low sidelobes using gradient-index metamaterials," J. Appl. Phys., Vol. 107, 014902, 2010.

32. Dou, W. B., Z. L. Sun, and X. Q. Tan, "Fields in the focal space of symmetrical hyperbolic focusing lens," Progress In Electromagnetics Research, Vol. 20, 213-226, 1998.
doi:10.2528/PIER98021300

33. Zhang, Z. and W. Dou, "Binary diffractive small lens array for Thz imaging system," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 177-187, 2011.
doi:10.1163/156939311794362821

34. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702

35. Lee, Y. H., B. J. Cahill, S. J. Porter, and A. C. Marvin, "A novel evolutionary learning technique for multi-objective array antenna optimization," Progress In Electromagnetics Research, Vol. 48, 125-144, 2004.
doi:10.2528/PIER04012202

36. Zhang, Q. and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Trans. Evol. Comput., Vol. 11, No. 6, 712-731, Dec. 2007.
doi:10.1109/TEVC.2007.892759

37. Pal, S., S. Das, and A. Basak, "Design of time-modulated linear arrays with a multi-objective optimization approach," Progress In Electromagnetics Research B, Vol. 23, 83-107, 2010.
doi:10.2528/PIERB10052401

38. Chen, Y., S. Yang, and Z. Nie, "Improving conflicting specifications of time-modulated antenna arrays by using a multiobjective evolutionary algorithm," Int. J. Numer. Model. El., Jul. 2011.

39. Goudos, S. K., K. Siakavara, E. E. Vafiadis, and J. N. Sahalos, "Pareto optimal Yagi-Uda antenna design using multi-objective differential evolution," Progress In Electromagnetics Research, Vol. 105, 231-251, 2010.
doi:10.2528/PIER10052302