Vol. 139
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-04-18
An Improved Decision Fusion Technique to Increase the Performance Level of Hrr ATR Systems
By
Progress In Electromagnetics Research, Vol. 139, 87-104, 2013
Abstract
According to literature, a significant and up to date research direction to increase the performance level of automatic target recognition (ATR) systems is focused on the use of information coming from an appropriate set of EM sensors and high-quality decision fusion techniques, respectively. Consequently, in this paper a genetic optimized version of Sugeno's fuzzy integral is discussed. In addition, using a real database belonging to the high-resolution radar (HRR) imagery, the superiority of the proposed decision fusion technique related to its standard version and other well-known decision fusion methods is also demonstrated.
Citation
Iulian Constantin Vizitiu, "An Improved Decision Fusion Technique to Increase the Performance Level of Hrr ATR Systems," Progress In Electromagnetics Research, Vol. 139, 87-104, 2013.
doi:10.2528/PIER13031103
References

1. Outhouse, M., A. Beach, and A. Parslow, "Automatic target recognition," Proceedings of SEAS DTC Technical Conference, Vol. A2, 2010.

2. Nebabib, V. G., Methods and Techniques of Radar Recognition, Artech House, London, 1994.

3. Tait, P., Introduction to Radar Target Recognition, IET Radar and Sonar Navigation Series, No. 18, 2005.

4. Duda, R. O., P. O. Hart, and D. G. Stork, Pattern Classification, John Wiley & Sons, New York, 2001.

5. Lee, C. K., C. W. Huang, and M. C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.
doi:10.2528/PIER08010206

6. Park, S. H., J. H. Lee, and K. T. Kim, "Performance analysis of the scenario-based construction method for real target ISAR recognition," Progress In Electromagnetics Research, Vol. 128, 137-151, 2012.

7. Quinquis, A., E. Radoi, and F. Totir, "Some radar imagery results using superresolution techniques," IEEE Tran. on Antennas and Propagation, Vol. 52, No. 5, 1-15, 2004.

8. Anton, L., Signal Processing in High Resolution Radars, MTA Press, Bucharest, 2008.

9. Han, S. K., H. T. Kim, and S. H. Park, "Efficient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601

10. Hall, D. L. and J. Llinas, Handbook of Multisensor Data Fusion, CRC Press, Boca Raton, 2001.

11. Vizitiu, I. C., Fundamentals of Electronic Warfare, MatrixRom, Bucharest, 2011.

12. Molder, C., Pattern Recognition: Classification Algorithms, MTA Press, Bucharest, 2004.

13. Ng, G. W., Intelligent Systems-fusion, Tracking and Control, RSP Press, Hertfordshire, 2003.

14. Mangai, U. G., S. Samanta, and P. R. Chowdhury, "A survey of decision fusion and feature fusion strategies for pattern classification," IETE Technical Review, Vol. 27, 293-307, 2010.
doi:10.4103/0256-4602.64604

15. Martin, A. and E. Radoi, "Effective ATR algorithms using information fusion models," Proceedings of International Conference on Information Fusion, 161-166, 2004.

16. Vizitiu, I. C. and I. Nicolaescu, "More efficient ATR system using the decision fusion between HRR and video imageries," Proceedings of IEEE International MRRS Conference, 272-275, 2011.

17. Alam, H., R. Hartono, and M. Fairhurst, "Use of genetic algorithms for optimizing a decision fusion framework," Proceedings of IEEE International Conference on Information Fusion, 831-837, 2003.

18. Vizitiu, I. C., Neuro-fuzzy-genetic Architectures: Theory and Applications, MTA Press, Bucharest, 2011.

19. Cui, M., Genetic Algorithms Based Feature Selection and Decision Fusion for Robust Remote Sensing Image Analysis, ProQuest, Cambridge, 2012.

20. Eiben, A. E. and J. E. Smith, Introduction to Evolutionary Computing, Springer, Berlin, 2008.
doi:10.1007/978-3-662-05094-1

21. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Tran. on Acoustic Speech, Signal Processing, Vol. 37, 984-995, 1986.

22. Radoi, E., A. Quinquis, and F. Totir, "Superresolution ISAR image classification using Fourier descriptors and SART neural network," Proceedings of the European Conference on Synthetic Aperture Radar, 241-244, 2004.

23. Carpenter, G., S. Grossberg, and J. H. Reynolds, "ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network," Neural Networks, Vol. 4, 565-588, 1991.
doi:10.1016/0893-6080(91)90012-T

24. Radoi, E., A. Quinquis, and F. Totir, "Supervised self-organizing classification of superresolution ISAR images: An anechoic chamber experiment," EURASIP Journal on Applied Signal Processing, Vol. 2006, 1-14, 2006.