1. Appleby, R. and R. N. Anderton, "Millimeter-wave and submillimeter-wave imaging for security and surveillance," Proceedings of the IEEE, Vol. 95, No. 8, 1683-1690, Aug. 2007.
doi:10.1109/JPROC.2007.898832 Google Scholar
2. Yujiri, L., M. Shoucri, and P. Moffa, "Passive millimeter wave imaging," IEEE Microwave Magazine, Vol. 4, No. 3, 39-50, Sep. 2003.
doi:10.1109/MMW.2003.1237476 Google Scholar
3. Sheen, M. D., M. D., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, Sep. 2001.
doi:10.1109/22.942570 Google Scholar
4. Ruf, S. C., C. T. Swift, A. B. Tanner, and D. M. Le Vine, "Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth," IEEE Trans. Geoscience and Remote Sensing, Vol. 26, No. 5, 597-611, Sep. 1998.
doi:10.1109/36.7685 Google Scholar
5. Le Vine, M. D. and J. C. Good, "Aperture synthesis for microwave radiometers in space,", NASA Tech. Memo., 85033, Goddard Space Flight Center, Greenbelt, MD, Aug. 1983. Google Scholar
6. Camps, A., J. Bara, I. C. Sanahuja, and F. Torres, "The processing of hexagonally sampled signals with standard rectangular techniques: Application to 2-D large aperture synthesis interferometric radiometers," IEEE Trans. Geoscience and Remote Sensing, Vol. 35, No. 1, 183-190, Jan. 1997.
doi:10.1109/36.551946 Google Scholar
7. Le Vine, D. M., M. Haken, and T. C. Swift, "Development of the synthetic aperture radiometer-ESTAR and the next generation," IEEE International Geoscience and Remote Sensing Symposium, Vol. 2, 1260-1263, 2004. Google Scholar
8. Kainulainen, J., K. Rautiainen, S. Tauriainen, T. Auer, J. Kettunen, and M. Hallikainen, "First 2-D interferometric radiometer imaging of the earth from an aircraft," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 2, 241-245, Apr. 2007.
doi:10.1109/LGRS.2006.890553 Google Scholar
9. Martin-Neira, M. and J. M. Goutoule, "A two-dimensional aperture-synthesis radiometer for soil moisture and ocean salinity observations," ESA Bull., No. 92, 95-104, Nov. 1997. Google Scholar
10. Silvestrin, P., M. Berger, Y. Kerr, and J. Font, "ESA's second earth explorer opportunity mission: The soil moisture and ocean salinity mission - SMOS," IEEE Geoscience and Remote Sensing Newsletter, Vol. 118, 11-14, Mar. 2001. Google Scholar
11. Kerr, Y. H., F. Cabot, P. Richaume, and J. Font, "Soil moisture and ocean salinity mission: First in-flight results," SPIE Newsroom Remote Sensing, Vol. 19, May 2010. Google Scholar
12. Jacobs, L. E. and O. Furxhi, "Performance modeling of a passive interferometric millimeter-wave sensor," Proceedings of SPIE, Vol. 7309, Apr. 2009. Google Scholar
13. Lucotte, B. M., B. Grafulla-Gonzalez, and R. A. Harvey, "Array rotation aperture synthesis for short range imaging at millimeter wavelengths," Radio Science, Vol. 44, 2009. Google Scholar
14. Su, K., W. Z. Liu, B. R. Barat, D. E. Gary, H. Z. Michalopoulou, and J. F. Federici, "Two-dimensional interferometric and synthetic aperture imaging with a hybrid terahertz/millimeter wave system," Applied Optics, Vol. 49, No. 19, E13-E19, Jul. 2010.
doi:10.1364/AO.49.000E13 Google Scholar
15. Zhang, C., J. Wu, H. Liu, and Y. J. Yan, "Imaging algorithm for synthetic aperture interferometric radiometer in near field," Science China Technological Sciences, Vol. 54, No. 8, 2224-2231, 2011.
doi:10.1007/s11431-011-4403-3 Google Scholar
16. Walsh, K. P., B. Schulkin, D. Gary, J. F. Federici, R. Barat, and D. Zimdars, "Terahertz near-field interferometric and synthetic aperture imaging," Proceedings of SPIE, Vol. 5411, 1-9, Sep. 2004. Google Scholar
17. Laursen, B. and N. Skou, "Synthetic aperture radiometry evaluated by a two-channel demonstration model," IEEE Trans. Geoscience and Remote Sensing, Vol. 36, No. 3, 822-832, May 1998.
doi:10.1109/36.673675 Google Scholar
18. Duffo, N., I. Corbella, F. Torres, A. Camps, and M. Vall-Llossera, "Advantages and drawbacks of near field characterization of large aperture synthesis radiometers," 8th Specialist Meeting on Microwave radiometry and Remote Sensing Applications, University La Sapienza, Rome, Feb. 2004. Google Scholar
19. Tanner, B. A., H. B. Lambrigsten, M. T. Gaier, and F. Torres, "Near field characterization of the GeoSTAR demonstrator," Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Denver, Co, USA, Jul. 2006. Google Scholar
20. Butora, R., M. Martin-Neira, and A. L. Rivada-Antich, "Fringe-washing function calibration in aperture synthesis microwave radiometry," Radio Science, Vol. 38, No. 2, 15.1-2, Apr. 2003.
doi:10.1029/2002RS002695 Google Scholar
21. Romberg, J., "Imaging via compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 14-20, Mar. 2008.
doi:10.1109/MSP.2007.914729 Google Scholar
22. Li, S. Y., X. Zhou, B. Ren, H.-J. Sun, and X. Lv, "A compressive sensing approach for synthetic aperture imaging radiometers," Rrogress In Electromagnetics Research, Vol. 135, 583-599, 2013. Google Scholar
23. Wright, S. J., R. D. Nowak, and M. A. T. Figueiredo, "Sparse reconstruction by separable approximation," IEEE Trans. Signal Processing, Vol. 57, No. 7, 2479-2493, Jul. 2009.
doi:10.1109/TSP.2009.2016892 Google Scholar
24. Figueiredo, M. A. T., R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 4, 586-597, Apr. 2007.
doi:10.1109/JSTSP.2007.910281 Google Scholar
25. Hale, E. T., W. Yin, and Y. Zhang, "Fixed-point continuation for L1 minimization: Methodology and convergence," SIAM Journal on Optimization, Vol. 19, No. 3, 1107-1130, 2008.
doi:10.1137/070698920 Google Scholar
26. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, Vol. 2, No. 1, 183-202, Mar. 2009.
doi:10.1137/080716542 Google Scholar