Vol. 149
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-11-17
Casimir Force for Complex Objects Using Domain Decomposition Techniques
By
Progress In Electromagnetics Research, Vol. 149, 275-280, 2014
Abstract
A method for calculating the Casimir force between large, complex 3D objects is presented. Difficulties have previously arisen in broadband multiscale calculation using CEM methods. To expand the range of problems that can be calculated, we use an integral equation, domain decomposition method (DDM) and argument principle to derive the Casimir force formula. The broadband integral equation DDM, which is the augmented equivalence principle algorithm (A-EPA), allows for an efficient broadband solution of large, complex objects. A-EPA subdivides a complex problem into separate smaller subproblems that are later recombined into a reduced matrix. This yields a reduced number of unknowns for complex structures making them feasible with modest computer resources. We demonstrate the advantages of the A-EPA by simulating large, finite, 3D, unaligned corrugated plates, which have previously only been modeled approximately as infinite plates using 2D techniques.
Citation
Phillip R. Atkins Weng Cho Chew Maokun Li Lin E. Sun Zu-Hui Ma Li Jun Jiang , "Casimir Force for Complex Objects Using Domain Decomposition Techniques," Progress In Electromagnetics Research, Vol. 149, 275-280, 2014.
doi:10.2528/PIER14102112
http://www.jpier.org/PIER/pier.php?paper=14102112
References

1. Atkins, P. R., "A study on computational electromagnetics problems with applications to Casimir force calculations,", Ph.D. thesis, University of Illinois at Urbana-Champaign, 2013.
doi:10.2528/PIER13082105

2. Atkins, P. R., Q. I. Dai, W. E. I. Sha, and W. C. Chew, "Casimir force for arbitrary objects using the argument principle and boundary element methods," Progress In Electromagnetics Research, Vol. 142, 615-624, 2013.
doi:10.1016/S0370-1573(01)00015-1

3. Bordag, M., U. Mohideen, and V. M. Mostepanenko, "New developments in the Casimir effect," Phys. Rep., Vol. 353, 1-205, 2001.

4. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Berlin, 2001.
doi:10.1109/8.237620

5. Chew, W. C. and C. C. Lu, "The use of Huygens equivalence principle for solving the volume integral equation of scattering," IEEE Trans. Antennas Propag., Vol. 41, No. 7, 897-904, 1993.
doi:10.1109/8.384194

6. Chew, W. C. and C. C. Lu, "The use of Huygens equivalence principle for solving 3-d volume integral equation of scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 5, 500-507, 1995.

7. Fraysse, V., L. Giraud, S. Gratton, and J. Langou, "A set of GMRES routines for real and complex arithmetics on high performance computers,", Technical report, CERFACS Technical Report TR/PA/03/3, 2003.

8. Lambrecht, A. and V. N. Marachevsky, "New geometries in the Casimir effect: Dielectric gratings," J. Phys. Conf. Ser., Vol. 161, 1-8, 2009.
doi:10.1137/S0895479895281484

9. Lehoucq, R. B. and D. C. Sorensen, "Deflation techniques for an implicitly restarted Arnoldi iteration," SIAM. J. Matrix Anal. & Appl., Vol. 17, No. 4, 789-821, 1996.

10. Lehoucq, R. B., D. C. Sorensen, and C. Yang, "ARPACK Users’ Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods," SIAM, 1998.

11. Li, M. K., "Studies on applying the equivalence principle algorithm on multiscale problems," Ph.D. thesis, University of Illinois at Urbana-Champaign , 2007.
doi:10.1109/TAP.2006.888453

12. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 130-138, 2007.
doi:10.1109/TAP.2008.926785

13. Li, M. K. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2389-2397, 2008.
doi:10.1002/mop.21777

14. Li, M. K., W. C. Chew, and Li J. Jiang, "A domain decomposition scheme based on equivalence theorem," Microwave and Opt. Tech. Lett., Vol. 48, No. 9, 1853-1857, 2006.

15. Ma, Z. H., "Fast methods for low frequency and static EM problems,", Ph.D. thesis, The University of Hong Kong, 2013.
doi:10.1103/PhysRevD.80.085021

16. Rahi, S. J., T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, "Scattering theory approach to electrodynamic Casimir forces," Phys. Rev. D, Vol. 80, 085021, 2009.
doi:10.1109/TAP.1982.1142818

17. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.

18. Homer Reid, M. T., A. W. Rodriguez, J. White, and S. G. Johnson, "Efficient computation of Casimir interactions between arbitrary 3d objects," Phys. Rev. Lett., Vol. 103, 2009.

19. Homer Reid, M. T., J. White, and S. G. Johnson, "Computation of Casimir interactions between arbitrary three-dimensional objects with arbitrary material properties," Phys. Rev. A, Vol. 84, 2011.
doi:10.1137/0907058

20. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, No. 3, 856-869, 1986.

21. Sun, L., "An enhanced volume integral equation method and augmented equivalence principle algorithm for low frequency problems,", Ph.D. thesis, University of Illinois at Urbana-Champaign, 2010.