Vol. 155
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-02-23
Fast Domain Decomposition Methods of FE-BI-MLFMA for 3D Scattering/Radiation Problems (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 155, 39-52, 2016
Abstract
It has been widely verified that the hybrid finite element - boundary integral - multilevel fast multipole algorithm (FE-BI-MLFMA) is a general, efficient and accurate method for the analysis of unbounded electromagnetic problems. A variety of fast methods of FE-BI-MLFMA have been developed since 1998. In particular, the domain decomposition methods have been applied to FE-BI-MLFMA and significantly improve the efficiency of FE-BI-MLFMA in recent years. A series of fast domain decomposition methods (DDMs) of FE-BI-MLFMA have been developed. These fast DDMs can be roughly classified into two types: Schwarz DDMs and dual-primal finite element tearing and interconnecting (FETI-DP) DDMs. This paper will first give an overview of the DDMs development of FE-BI-MLFMA. Then a uniform, consistent, and efficient formulation is presented and discussed for these fast DDMs of FE-BI-MLFMA. Their computational complexities are analyzed and studied numerically.
Citation
Ming-Lin Yang Hong-Wei Gao Xu-Min Sun Xin-Qing Sheng , "Fast Domain Decomposition Methods of FE-BI-MLFMA for 3D Scattering/Radiation Problems (Invited Paper)," Progress In Electromagnetics Research, Vol. 155, 39-52, 2016.
doi:10.2528/PIER15102802
http://www.jpier.org/PIER/pier.php?paper=15102802
References

1. Sheng, X. Q., J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, "On the formulation of hybrid finite element and boundary integral methods for 3-D scattering," IEEE Transactions on Antennas and Propagation, Vol. 46, 303-311, 1998.
doi:10.1109/8.662648

2. Sheng, X. Q. and E. K. N. Yung, "Implementation and experiments of a hybrid algorithm of the MLFMA-Enhanced FE-BI method for open-region inhomogeneous electromagnetic problems," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 163-167, 2002.
doi:10.1109/8.997987

3. Botha, M. M. and J. M. Jin, "On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 3037-3047, 2004.
doi:10.1109/TAP.2004.835140

4. Vouvakis, M. N., S. C. Lee, K. Zhao, and J. F. Lee, "A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 3060-3070, 2004.
doi:10.1109/TAP.2004.837525

5. Liu, J. and J. M. Jin, "A special higher-order finite-element method for scattering by deep cavities," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 5, 694-703, 2000.
doi:10.1109/8.855487

6. Jin, J. M., J. Liu, Z. Lou, and C. S. T. Liang, "A fully high-order finite-element simulation of scattering by deep cavities," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2420-2429, 2003.
doi:10.1109/TAP.2003.816354

7. Peng, Z. and X. Q. Sheng, "A flexible and efficient higher-order FE-BI-MLFMA for scattering by a large body with deep cavities," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 2031-2042, 2008.
doi:10.1109/TAP.2008.924725

8. Yang, M. L. and X.-Q. Sheng, "Parallel high-order FE-BI-MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.
doi:10.1163/156939309789566932

9. Liu, J. and J. M. Jin, "A highly effective preconditioner for solving the finite element-boundary integral matrix equation for 3-D scattering," IEEE Transactions on Antennas and Propagation, Vol. 50, 1212-1221, 2002.

10. Hu, F. G. and C. F. Wang, "Preconditioned formulation of FE-BI equations with domain decomposition method for calculation of electromagnetic scattering from cavities," IEEE Transactions on Antennas and Propagation, Vol. 57, 2506-2511, 2009.

11. Lee, J., J. Zhang, and C. C. Lu, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2277-2287, 2004.
doi:10.1109/TAP.2004.834084

12. Lee, J. F. and D. K. Sun, "p-type multiplicative Schwarz (pMUS) method with vector finite elements for modeling three-dimensional waveguide discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 864-870, 2004.
doi:10.1109/TMTT.2004.823554

13. Yang, M. L. and X. Q. Sheng, "Hybrid h-and p-type multiplicative Schwarz (h-p-MUS) preconditioned algorithm of higher-order FE-BIMLFMA for 3D scattering," IEEE Transactions on Magnetics, Vol. 48, 187-190, 2012.
doi:10.1109/TMAG.2011.2174033

14. Despres, B., P. Joly, and J. E. Roberts, "A domain decomposition method for the harmonicMaxwell equations," Iterative Methods in Linear Algebraic Amsterdam, 475-484, The Netherlands, 1992.

15. Farhat, C. and F. X. Roux, "A method of finite element tearing and interconnecting and its parallel solution algorithm," International Journal for Numerical Methods in Engineering, Vol. 32, 1205-1227, 1991.
doi:10.1002/nme.1620320604

16. Wolfe, C. T., U. Navsariwala, and S. D. Gedney, "An efficient implementation of the finite-element time-domain algorithm on parallel computers using finite-element tearing and interconnecting algorithm," Microwave and Optical Technology Letters, Vol. 16, No. 4, 1997.

17. Farhat, C., P. Avery, and R. Tezaur, "FETI-DPH: A dual-primal domain decomposition method for acoustic scattering," Journal of Computational Acoustics, Vol. 13, 499-524, 2005.
doi:10.1142/S0218396X05002761

18. Li, Y. J. and J. M. Jin, "A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems," IEEE Transactions on Antennas and Propagation, Vol. 54, 3000-3009, 2006.
doi:10.1109/TAP.2006.882191

19. Li, Y. J. and J. M. Jin, "A new dual-primal domain decomposition approach for finite element simulation of 3-D large-scale electromagnetic problems," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 10, 2803-2810, 2007.
doi:10.1109/TAP.2007.905954

20. Yang, M. L. and X. Q. Sheng, "On the finite element tearing and interconnecting method for scattering by large 3D inhomogeneous targets," International Journal of Antennas and Propagation, Vol. 2011, 2012, [Online], available: http://www.hindawi.com/journals/ijap/2012/898247/.

21. Zhao, K., V. Rawat, S. C. Lee, and J. F. Lee, "A domain decomposition method with nonconformal meshes for finite periodic and semi-periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 9, 2559-2570, 2007.
doi:10.1109/TAP.2007.904107

22. Peng, Z. and J. F. Lee, "Non-conformal domain decomposition method with mixed true second order transmission condition for solving large finite antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1638-1651, 2011.
doi:10.1109/TAP.2011.2123067

23. Xue, M. F. and J. M. Jin, "Nonconformal FETI-DP methods for large-scale electromagnetic simulation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4291-4304, 2012.
doi:10.1109/TAP.2012.2207076

24. Xue, M. F. and J. M. Jin, "A hybrid conformal/nonconformal domain decomposition method for multi-region electromagnetic modeling," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2009-2021, 2014.
doi:10.1109/TAP.2014.2300149

25. Vouvakis, M. N., K. Zhao, S. M. Seo, and J. F. Lee, "A domain decomposition approach for nonconformal couplings between finite and boundary elements for unbounded electromagnetic problems in R3," Journal of Computational Physics, Vol. 225, No. 1, 975-994, 2007.
doi:10.1016/j.jcp.2007.01.014

26. Zhao, K. Z., V. Rawat, S. C. Lee, and J. F. Lee, "Hybrid domain decomposition method and boundary element method for the solution of large array problems," IEEE Antennas and Propagation Society International Symposium, 2007.

27. Xue, M. F., Y. J. Li, and J. M. Jin, "Acceleration and accuracy improvement of FEM computation by using FETI-DP and BI hybrid algorithm," IEEE Antennas and Propagation Society International Symposium, 2010.

28. Yang, M. L., H. W. Gao, and X. Q. Sheng, "Parallel domain-decomposition-based algorithm of hybrid FE-BI-MLFMA method for 3D scattering by large inhomogeneous objects," IEEE Transactions on Antennas and Propagation, Vol. 61, 4675-4683, 2013.
doi:10.1109/TAP.2013.2271232

29. Yang, M. L., H. W. Gao, W. Song, and X. Q. Sheng, "An effective domain-decomposition-based preconditioner for the FE-BI-MLFMA method for 3D scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2263-2268, 2014.
doi:10.1109/TAP.2014.2300159

30. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

31. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

32. Amestoy, P. R., I. S. Duff, J. Koster, and J.-Y. L’Excellent, "A fully asynchronous multifrontal solver using distributed dynamic scheduling," SIAM Journal of Matrix Analysis and Applications, Vol. 23, 15-41, 2001.
doi:10.1137/S0895479899358194