1. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Vol. 440, 508-511, 2006.
doi:10.1038/nature04594 Google Scholar
2. Engheta, N., "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterial," Science, Vol. 317, 1698-1702, 2007.
doi:10.1126/science.1133268 Google Scholar
3. Ebbesen, T. W., C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Physics Today, Vol. 61, 44, 2008.
doi:10.1063/1.2930735 Google Scholar
4. De Leon, I. and P. Berini, "Amplification of long-range surface plasmons by a dipolar gain medium," Nature Photonics, Vol. 4, 382-387, 2010.
doi:10.1038/nphoton.2010.37 Google Scholar
5. He, S., Y. He, and Y. Jin, "Revealing the truth about `trapped rainbow' storage of light in metamaterial," Scientific Reports, Vol. 2, 2012. Google Scholar
6. Gan, Q., Y. J. Ding, and F. J. Bartoli, "Rainbow trapping and releasing at telecommunication wavelengths," Physical Review Letters, Vol. 102, 056801, 2009.
doi:10.1103/PhysRevLett.102.056801 Google Scholar
7. Hu, H., D. Ji, X. Zeng, K. Liu, and Q. Gan, "Rainbow trapping in hyperbolic metamaterial waveguide," Scientific Reports, Vol. 3, 2013. Google Scholar
8. Wang, G., H. Lu, and X. Liu, "Trapping of surface plasmon waves in graded grating waveguide system," Applied Physics Letters, Vol. 101, 013111, 2012.
doi:10.1063/1.4733477 Google Scholar
9. Politano, A. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Applied Physics Letters, Vol. 102, 201608, 2013.
doi:10.1063/1.4804189 Google Scholar
10. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, 8215-8220, 2013.
doi:10.1039/c3nr02027d Google Scholar
11. Koppens, F. H., D. E. Chang, and F. J. Garcia de Abajo, "Graphene plasmonics: A platform for strong light–matter interactions," Nano Letters, Vol. 11, 3370-3377, 2011.
doi:10.1021/nl201771h Google Scholar
12. Fang, Z., S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, et al. "Gated tunability and hybridization of localized plasmons in nanostructured graphene," ACS Nano, Vol. 7, 2388-2395, 2013.
doi:10.1021/nn3055835 Google Scholar
13. Novoselov, K. S., A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, et al. "Electric field effect in atomically thin carbon films," Science, Vol. 306, 666-669, 2004.
doi:10.1126/science.1102896 Google Scholar
14. Grigorenko, A., M. Polini, and K. Novoselov, "Graphene plasmonics," Nature Photonics, Vol. 6, 749-758, 2012.
doi:10.1038/nphoton.2012.262 Google Scholar
15. Bonaccorso, F., Z. Sun, T. Hasan, and A. Ferrari, "Graphene photonics and optoelectronics," Nature Photonics, Vol. 4, 611-622, 2010.
doi:10.1038/nphoton.2010.186 Google Scholar
16. Politano, A. and G. Chiarello, "Probing Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: A comparative study," Nano Research, 1-10, 2014. Google Scholar
17. Matis, B. R., J. S. Burgess, F. A. Bulat, A. L. Friedman, B. H. Houston, and J. W. Baldwin, "Surface doping and band gap tunability in hydrogenated graphene," ACS Nano, Vol. 6, 17-22, 2012.
doi:10.1021/nn2034555 Google Scholar
18. Politano, A., D. Campi, V. Formoso, and G. Chiarello, "Evidence of confinement of the π plasmon in periodically rippled graphene on Ru(0001)," Physical Chemistry Chemical Physics, Vol. 15, 11356-11361, 2013.
doi:10.1039/c3cp51954f Google Scholar
19. Politano., A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.
doi:10.1039/C4NR03143A Google Scholar
20. Rast, L., T. Sullivan, and V. Tewary, "Stratified graphene/noble metal systems for low-loss plasmonics applications," Physical Review B, Vol. 87, 045428, 2013.
doi:10.1103/PhysRevB.87.045428 Google Scholar
21. Liu, Y., T. Zentgraf, G. Bartal, and X. Zhang, "Transformational plasmon optics," Nano Letters, Vol. 10, 1991-1997, 2010.
doi:10.1021/nl1008019 Google Scholar
22. Zentgraf, T., Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, "Plasmonic luneburg and eaton lenses," Nature Nanotechnology, Vol. 6, 151-155, 2011.
doi:10.1038/nnano.2010.282 Google Scholar
23. Della Valle, G. and S. Longhi, "Graded index surface-plasmon-polariton devices for subwavelength light management," Physical Review B, Vol. 82, 153411, 2010.
doi:10.1103/PhysRevB.82.153411 Google Scholar
24. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, 064302, 2008.
doi:10.1063/1.2891452 Google Scholar
25. Wang, W., S. P. Apell, and J. M. Kinaret, "Edge magnetoplasmons and the optical excitations in graphene disks," Physical Review B, Vol. 86, 125450, 2012.
doi:10.1103/PhysRevB.86.125450 Google Scholar
26. Fallahi, A. and J. Perruisseau-Carrier, "Design of tunable biperiodic graphene metasurfaces," Physical Review B, Vol. 86, 195408, 2012.
doi:10.1103/PhysRevB.86.195408 Google Scholar
27. Vakil, A. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, 1291-1294, 2011.
doi:10.1126/science.1202691 Google Scholar
28. Mikhailov, S. and K. Ziegler, "New electromagnetic mode in graphene," Physical Review Letters, Vol. 99, 016803, 2007.
doi:10.1103/PhysRevLett.99.016803 Google Scholar
29. Zeng, C., X. Liu, and G. Wang, "Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics," Scientific Reports, Vol. 4, 2014. Google Scholar
30. Gao, W., J. Shu, C. Qiu, and Q. Xu, "Excitation of plasmonic waves in graphene by guided-mode resonances," ACS Nano, Vol. 6, 7806-7813, 2012.
doi:10.1021/nn301888e Google Scholar
31. Gutman, A., "Modified luneberg lens," Journal of Applied Physics, Vol. 25, 855-859, 1954.
doi:10.1063/1.1721757 Google Scholar
32. Xu, H. J., W. B. Lu, Y. Jiang, and Z. G. Dong, "Beam-scanning planar lens based on graphene," Applied Physics Letters, Vol. 100, 051903, 2012.
doi:10.1063/1.3681799 Google Scholar
33. Bolotin, K., K. Sikes, J. Hone, H. Stormer, and P. Kim, "Temperature-dependent transport in suspended graphene," Physical Review Letters, Vol. 101, 096802, 2008.
doi:10.1103/PhysRevLett.101.096802 Google Scholar
34. Dorgan, V. E., A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, "High-field electrical and thermal transport in suspended graphene," Nano Letters, Vol. 13, 4581-4586, 2013.
doi:10.1021/nl400197w Google Scholar