1. Kak, A. C. and M. Slaney, "Principles of computerized tomographic imaging," Society for Industrial and Applied Mathematics, 2001. Google Scholar
2. Paladhi, P., A. Sinha, A. Tayebi, L. Udpa, and A. Tamburrino, "Data redundancy in diffraction tomography," 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES), 1-2, March 2015. Google Scholar
3. Paladhi, P. R., A. Tayebi, L. Udpa, S. Udpa, and A. Sinha, "Class of backpropagation techniques for limited-angle reconstruction in microwave tomography," AIP Conference Proceedings, Vol. 1650, No. 1, 509-518, 2015.
doi:10.1063/1.4914648 Google Scholar
4. Paladhi, P. R., A. Sinha, A. Tayebi, L. Udpa, and S. S. Udpa, "Improved backpropagation algorithms by exploiting data redundancy in limited-angle diffraction tomography," Progress In Electromagnetics Research B, Vol. 66, 1-13, 2016.
doi:10.2528/PIERB15120204 Google Scholar
5. Paladhi, P. R., J. Klaser, A. Tayebi, L. Udpa, and S. Udpa, "Reconstruction algorithm for limited-angle diffraction tomography for microwave NDE," AIP Conference Proceedings, Vol. 1581, No. 1, 1544-1551, 2014.
doi:10.1063/1.4865007 Google Scholar
6. LaRoque, S. J., E. Y. Sidky, and X. Pan, "Accurate image reconstruction from few-view and limited-angle data in diffraction tomography," JOSA A, Vol. 25, No. 7, 1772-1782, 2008.
doi:10.1364/JOSAA.25.001772 Google Scholar
7. Sung, Y. and R. R. Dasari, "Deterministic regularization of three-dimensional optical diffraction tomography," JOSA A, Vol. 28, No. 8, 1554-1561, 2011.
doi:10.1364/JOSAA.28.001554 Google Scholar
8. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
9. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731 Google Scholar
10. Candes, E. J., J. K. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Communications on Pure and Applied Mathematics, Vol. 59, No. 8, 1207-1223, 2006.
doi:10.1002/cpa.20124 Google Scholar
11. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083 Google Scholar
12. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, Vol. 58, No. 6, 1182-1195, 2007.
doi:10.1002/mrm.21391 Google Scholar
13. Lustig, M., D. Donoho, J. Santos, and J. Pauly, "Compressed sensing MRI," IEEE Signal Processing Magazine, Vol. 25, No. 2, 72-82, March 2008.
doi:10.1109/MSP.2007.914728 Google Scholar
14. Chartrand, R., "Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data," IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, ISBI'09, 262-265, 2009.
doi:10.1109/ISBI.2009.5193034 Google Scholar
15. Gamper, U., P. Boesiger, and S. Kozerke, "Compressed sensing in dynamic MRI," Magnetic Resonance in Medicine, Vol. 59, No. 2, 365-373, 2008.
doi:10.1002/mrm.21477 Google Scholar
16. Hua, S., M. Ding, and M. Yuchi, "Sparse-view ultrasound diffraction tomography using compressed sensing with nonuniform fit," Computational and Mathematical Methods in Medicine, Vol. 2014, 2014. Google Scholar
17. Zhu, Z., K. Wahid, P. Babyn, D. Cooper, I. Pratt, and Y. Carter, "Improved compressed sensing- based algorithm for sparse-view CT image reconstruction," Computational and Mathematical Methods in Medicine, Vol. 2013, 2013. Google Scholar
18. Mishali, M. and Y. C. Eldar, "From theory to practice: Sub-nyquist sampling of sparse wideband analog signals," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 375-391, 2010.
doi:10.1109/JSTSP.2010.2042414 Google Scholar
19. Liu, J., C. Z. Han, X. H. Yao, and F. Lian, "A novel compressed sensing based method for space time signal processing for airborne radars," Progress In Electromagnetics Research B, Vol. 52, 139-163, 2013.
doi:10.2528/PIERB13033105 Google Scholar
20. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," 2007 IEEE Radar Conference, 128-133, 2007.
doi:10.1109/RADAR.2007.374203 Google Scholar
21. Yang, M. and G. Zhang, "Parameter identifiability of monostatic mimo chaotic radar using compressed sensing," Progress In Electromagnetics Research B, Vol. 44, 367-382, 2012.
doi:10.2528/PIERB12072712 Google Scholar
22. El-Khamy, M., M. Farrag, and M. El-Sharkawy, "Wide-band secure compressed spectrum sensing for cognitive radio systems," Progress In Electromagnetics Research B, Vol. 53, 47-71, 2013.
doi:10.2528/PIERB13051805 Google Scholar
23. Zhang, Y., L. Wu, B. Peterson, and Z. Dong, "A two-level iterative reconstruction method for compressed sensing MRI," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1081-1091, 2011.
doi:10.1163/156939311795762024 Google Scholar
24. Zhang, Y., S. Wang, G. Ji, and Z. Dong, "Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 10, No. 1, 116-117, 2015.
doi:10.1002/tee.22059 Google Scholar
25. Zhang, Y., B. S. Peterson, G. Ji, and Z. Dong, "Energy preserved sampling for compressed sensing MRI," Computational and Mathematical Methods in Medicine, Vol. 2014, 2014. Google Scholar
26. Devaney, A., "A filtered backpropagation algorithm for diffraction tomography," Ultrasonic Imaging, Vol. 4, No. 4, 336-350, 1982.
doi:10.1177/016173468200400404 Google Scholar
27. Sung, Y., W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Optical diffraction tomography for high resolution live cell imaging," Optics Express, Vol. 17, No. 1, 266-277, 2009.
doi:10.1364/OE.17.000266 Google Scholar
28. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604 Google Scholar
29. Drogoudis, D. G., G. A. Kyriacou, and J. N. Sahalos, "Microwave tomography employing an adjoint network based sensitivity matrix," Progress In Electromagnetics Research, Vol. 94, 213-242, 2009.
doi:10.2528/PIER09060808 Google Scholar
30. Baran, A., D. J. Kurrant, A. Zakaria, E. C. Fear, and J. LoVetri, "Breast imaging using microwave tomography with radar-based tissue-regions estimation," Progress In Electromagnetics Research, Vol. 149, 161-171, 2014.
doi:10.2528/PIER14080606 Google Scholar
31. Tayebi, A., J. Tang, P. R. Paladhi, L. Udpa, and S. Udpa, "Design and development of an electrically-controlled beam steering mirror for microwave tomography," AIP Conference Proceedings, Vol. 1650, 501-508, AIP Publishing, 2015. Google Scholar
32. Tayebi, A., J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, "Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4534-4539, 2015.
doi:10.1109/TAP.2015.2456939 Google Scholar
33. Tayebi, A., P. Roy Paladhi, L. Udpa, and S. Udpa, "A novel time reversal based microwave imaging system," Progress In Electromagnetics Research C, Vol. 62, 139-147, 2016.
doi:10.2528/PIERC16012403 Google Scholar
34. Candes, E. J. and T. Tao, "Decoding by linear programming," IEEE Transactions on Information Theory, Vol. 51, No. 12, 4203-4215, 2005.
doi:10.1109/TIT.2005.858979 Google Scholar
35. Candes, E. and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Problems, Vol. 23, No. 3, 969, 2007.
doi:10.1088/0266-5611/23/3/008 Google Scholar
36. Boyd, S. and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
doi:10.1017/CBO9780511804441
37. Bronstein, M. M., A. M. Bronstein, M. Zibulevsky, and H. Azhari, "Reconstruction in diffraction ultrasound tomography using nonuniform fit," IEEE Transactions on Medical Imaging, Vol. 21, No. 11, 1395-1401, 2002.
doi:10.1109/TMI.2002.806423 Google Scholar
38. Liberti, L. and N. Maculan, "Global optimization: From theory to implementation," Springer Science & Business Media, Vol. 84, 2006. Google Scholar
39. Sturm, J. F., "Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones," Optimization Methods and Software, Vol. 11, No. 1--4, 625-653, 1999.
doi:10.1080/10556789908805766 Google Scholar