Vol. 165
Latest Volume
All Volumes
PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-09-25
A Camouflage Device Without Metamaterials
By
Progress In Electromagnetics Research, Vol. 165, 107-117, 2019
Abstract
We propose a camouflage device that can greatly reduce scattering in the microwave frequency using only uniform copper plates with no internal structuring (no metamaterials). The camouflage device is designed by optical surface transformation (OST), which is derived from transformation optics but much simpler than transformation optics. The key of our design is to choose suitable arrangement and lengths of these copper plates that satisfy Fabry-Perot condition. The proposed camouflage device can work when the detecting wave comes from a wide-angle range (not only works for some discrete angles). The proposed method will give a new and simple way to design and realize camouflage device.
Citation
Fei Sun, Yijie Zhang, Julian Evans, and Sailing He, "A Camouflage Device Without Metamaterials," Progress In Electromagnetics Research, Vol. 165, 107-117, 2019.
doi:10.2528/PIER19080803
http://www.jpier.org/PIER/pier.php?paper=19080803
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
doi:10.1126/science.1125907

2. Chen, H., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nat. Mater., Vol. 9, 387, 2010.
doi:10.1038/nmat2743

3. Sun, F., B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, "Transformation optics: From classic theory and applications to its new branches," Laser Photonics Rev., Vol. 11, 1700034, 2017.
doi:10.1002/lpor.201700034

4. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977, 2006.
doi:10.1126/science.1133628

5. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224, 2007.
doi:10.1038/nphoton.2007.28

6. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nat. Mater., Vol. 12, 25, 2013.
doi:10.1038/nmat3476

7. Shen, L., B. Zheng, Z. Liu, Z. Wang, S. Lin, S. Dehdashti, E. Li, and H. Chen, "Large-scale farinfrared invisibility cloak hiding object from thermal detection," Adv. Opt. Mater., Vol. 3, 1738, 2015.
doi:10.1002/adom.201500267

8. Chen, H., B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nat. Commun., Vol. 4, 2652, 2013.
doi:10.1038/ncomms3652

9. Zheng, B., R. Zhu, L. Jing, Y. Yang, L. Shen, H. Wang, Z. Wang, X. Zhang, X. Liu, E. Li, and H. Chen, "3D visible-light invisibility cloak," Adv. Sci., Vol. 5, 1800056, 2018.
doi:10.1002/advs.201800056

10. Ma, Y., Y. Liu, L. Lan, T. Wu, W. Jiang, C. K. Ong, and S. He, "First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping," Sci. Rep., Vol. 3, 2182, 2013.
doi:10.1038/srep02182

11. Ma, Y., L. Lan, W. Jiang, F. Sun, and S. He, "A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity," NPG Asia Mater., Vol. 5, e73, 2013.
doi:10.1038/am.2013.60

12. Zhang, S., C. Xia, and N. Fang, "Broadband acoustic cloak for ultrasound waves," Phys. Rev. Lett., Vol. 106, 024301, 2011.
doi:10.1103/PhysRevLett.106.024301

13. Gomory, F., M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, 1466, 2012.
doi:10.1126/science.1218316

14. Zhu, J., W. Jiang, Y. Liu, G. Yin, J. Yuan, S. He, and Y. Ma, "Three-dimensional magnetic cloak working from dc to 250 kHz," Nat. Commun., Vol. 6, 8931, 2015.
doi:10.1038/ncomms9931

15. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901

16. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366, 2009.
doi:10.1126/science.1166949

17. Chen, X., Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nat. Commun., Vol. 2, 176, 2011.
doi:10.1038/ncomms1176

18. Sun, F. and S. He, "Optical surface transformation: Changing the optical surface by homogeneous optic-null medium at will," Sci. Rep., Vol. 5, 16032, 2015.
doi:10.1038/srep16032

19. Sun, F. and S. He, "Surface transformation with homogenous optic-null medium," Progress In Electromagnetics Research, Vol. 151, 169-173, 2015.
doi:10.2528/PIER15042805

20. Guo, S., F. Sun, and S. He, "Optical surface transformation for reshaping the field intensity distribution," J. Opt. Soc. Am. B, Vol. 33, 1847, 2016.
doi:10.1364/JOSAB.33.001847

21. Sun, F., X. Ge, and S. He, "Creating a zero-order resonator using an optical surface transformation," Sci. Rep., Vol. 6, 21333, 2016.
doi:10.1038/srep21333

22. Sun, F. and S. He, "Overlapping illusions by transformation optics without any negative refraction material," Sci. Rep., Vol. 6, 19130, 2016.
doi:10.1038/srep19130

23. Sun, F. and S. He, "Waveguide bends by optical surface transformations and optic-null media," J. Opt. Soc. Am. B, Vol. 35, 944, 2018.
doi:10.1364/JOSAB.35.000944

24. Sun, F. and S. He, "Optic-null space medium for cover-up cloaking without any negative refraction index materials," Sci. Rep., Vol. 6, 29280, 2016.
doi:10.1038/srep29280

25. Sun, F. and S. He, "Subwavelength focusing by optical surface transformation," Opt. Commun., Vol. 427, 139, 2018.
doi:10.1016/j.optcom.2018.06.029

26. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, 063903, 2008.
doi:10.1103/PhysRevLett.100.063903

27. Sadeghi, M. M., S. Li, L. Xu, B. Hou, and H. Chen, "Transformation optics with Fabry-P´erot resonances," Sci. Rep., Vol. 5, 8680, 2015.
doi:10.1038/srep08680

28. Zheng, B., Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, "Experimental realization of an extreme-parameter omnidirectional cloak," Research, Vol. 2019, 8282641, 2019.

29. Zhang, Y., Y. Luo, J. B. Pendry, and B. Zhang, "Transformation-invariant metamaterials," Phys. Rev. Lett., Vol. 123, 067701, 2019.
doi:10.1103/PhysRevLett.123.067701

30. Sun, F. and S. He, "Extending the scanning angle of a phased array antenna by using a null-space medium," Sci. Rep., Vol. 4, 6832, 2014.
doi:10.1038/srep06832

31. He, S. and F. Sun, "A new invisibility structure in upper air,", Chinese Patent; public number: CN108808259A (publication date: November 13, 2018), https://www.tianyancha.com/patent/acee8373a11f5d53301f05da263799fd.

32. He, S., F. Sun, and Y. Liu, "A novel optical retro-reflector and retro-reflection array,", Chinese Patent; public number: CN108415109A (publication date: August 17, 2018), https://www.tianyancha.com/patent/7584015d358172d59ae7dd902a7892f9.