1. Harrington, R. F., Field Computation by Moment Method, Macmillan Press, 1968.
2. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Electromagnetic scattering from electrically large coated flat and curved strips: Entire domain Galerkin formulation," IEEE Trans. Antennas Propagat., Vol. 35, 790-801, July 1987.
doi:10.1109/TAP.1987.1144170 Google Scholar
3. Medgyesi-Mitschang, L. N. and D. S. Wang, "Hybrid solutions for scattering from large bodies of revolution with material discontinuities and coatings," IEEE Trans. Antennas Propagat., Vol. 32, 717-723, June 1984.
doi:10.1109/TAP.1984.1143398 Google Scholar
4. Kishk, A. A., A. W. Glisson, and P. M. Goggans, "Scattering from conductors coated with materials of arbitrary thickness," IEEE Trans. Antennas Propagat., Vol. 40, 108-112, Jan. 1992.
doi:10.1109/8.123366 Google Scholar
5. Petre, P., M. Swaminathan, G. Veszely, and T. K. Sarkar, "Integral equation solution for analyzing scattering from one-dimensional periodic coated strips," IEEE Trans. Antennas Propagat., Vol. 41, 1069-1080, Aug. 1993.
doi:10.1109/8.244648 Google Scholar
6. Petre, P., M. Swaminathan, L. Zombory, T. K. Sarkar, and K. A. Jose, "Volume/surface formulation for analyzing scattering from coated periodic strip," IEEE Trans. Antennas Propagat., Vol. 42, 119-122, Jan. 1994.
doi:10.1109/8.272312 Google Scholar
7. Rao, S. M., C. C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness," IEEE Trans. Antennas Propagat., Vol. 39, 627-631, May 1991.
doi:10.1109/8.81490 Google Scholar
8. Richmond, J. H., "Digital computer solutions of the rigorous equations for scattering problems," Proc. IEEE, Vol. 53, 796-804, Aug. 1965.
doi:10.1109/PROC.1965.4057 Google Scholar
9. Mittra, R., (ed.), Computer Techniques for Electromagnetics, Pergamon Press, 1973.
10. Balanis, C. A., Antenna Theory: Analysis and Design, 283-321, Harper & Row, 1982.
11. Bulter, C. M. and D. R. Wilton, "Analysis of various numerical techniques applied to thin-wire scatterers," IEEE Trans. AP, Vol. 23, No. 4, 524-540, July 1975. Google Scholar
12. Meyer, Y., Wavelets: Algorithms & Applications, translated and revised by R. D. Ryan, SIAM Press, 1993.
13. Daubechies, I., Ten Lectures on Wavelet, SIAM Press, 1992.
doi:10.1137/1.9781611970104
14. Chui, C. K., An Introduction to Wavelets, Academic, 1991.
15. Chui, C. K., Ed., Wavelets --- A Tutorial in Theory and Applications, Academic, 1992.
16. Daubechies, I., "Orthonormal bases of compactly supported wavelets," Commun. Pure Appl. Math., Vol. 41, 909-996, Nov. 1988. Google Scholar
17. Beylkin, G., R. R. Coifman, and V. Rokhlin, "Fast wavelet transform and numerical algorithm I," Comm. Pure Appl. Math., Vol. 44, 141-183, 1991.
doi:10.1002/cpa.3160440202 Google Scholar
18. Steinberg, B. Z. and Y. Leviatan, "On the use of wavelet expansions in method of moments," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 610-619, May 1993.
doi:10.1109/8.222280 Google Scholar
19. Steinberg, B. Z. and Y. Leviatan, "Periodic wavelet expansions for analysis of scattering from metallic cylinders," IEEE Antennas Propagat. Soc. Symp., 20-23, June 1994. Google Scholar
20. Wagner, R. L., P. Otto, and W. C. Chew, "Fast waveguide mode compuation using wavelet-like basis functions," IEEE Microwave Guided Wave Lett., Vol. 3, 208-210, July 1993. Google Scholar
21. Franza, O. P., R. L. Wagner, and W. C. Chew, "Wavelet-like basis functions for solving scattering integral equation," IEEE Antennas Propagat. Soc. Symp., 3-6, June 1994. Google Scholar
22. Kim, H. and H. Ling, "On the application of fast wavelet transform to the integral equation of electromagnetic scattering problems," Microwave Opt. Technol. Lett., Vol. 6, No. 3, 168-173, Mar. 1993.
doi:10.1002/mop.4650060305 Google Scholar
23. Goswami, J. C., A. K. Chan, and C. K. Chui, "On solving firstkind integral equations using wavelets on a bounded interval," IEEE Trans. Antenna Propagat., Vol. 43, No. 6, 614-622, June l995.
doi:10.1109/8.387178 Google Scholar
24. Wang, G., "A hybrid wavelet expansion and boundary element analysis of electromagnetic scattering from conducting objects," IEEE Trans. Antenna Propagat., Vol. 43, No. 2, 170-178, Feb. 1995.
doi:10.1109/8.366379 Google Scholar
25. Sarkar, T. K., R. S. Adve, L. Castillo, and M. Palma, "Utilization of wavelet concepts in finite elements for an efficient solution of Maxwell’s equations," Radio Science, Vol. 29, 965-977, July 1994. Google Scholar
26. Garcia-Castillo, L., M. Salezar-Palma, T. K. Sarkar, and R. S. Adve, "Efficient solution of the differential form of Maxwell’s equations in rectangular regions," IEEE Trans. on MTT, Vol. 43, No. 3, 647-654, March 1995.
doi:10.1109/22.372112 Google Scholar
27. Brandt, A., "Multi-level adaptive solutions to boundary value problems," Mathematics of Computation, Vol. 31, 330-390, 1977. Google Scholar
28. Hackbusch, W., Multigrid Methods and Applications, Springer-Verlag, 1985.
29. McCormick, S. F., "Multigrid Methods: Theory, Applications and Suppercomputing," Marcel Dekker, 1988. Google Scholar
30. Mandel, J., "On multilevel iterative methods for integral equations of the second kind and related problems," Numer. Math., Vol. 46, 147-157, 1985.
doi:10.1007/BF01400261 Google Scholar
31. Hemker, P. W. and H. Schippers, "Multiple grid methods for the solution of Fredholm integral equations of the second kind," Mathematics of Computation, Vol. 36, No. 153, 1981.
doi:10.1090/S0025-5718-1981-0595054-2 Google Scholar
32. Kalbasi, K. and K. R. Demarest, "A multilevel enchancement of the method of moments," 7th Ann. Rev. Progress Appl. Computat. Electromagn., 254-263, Naval, Monterey, CA, Mar. 1991. Google Scholar
33. Kalbasi, K. and K. R. Demarest, "A multilevel formulation of the method of moments," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 589-599, May 1993.
doi:10.1109/8.222278 Google Scholar