1. Harrington, R. F., Field Computation by Moment Method, Hacmillan Press, New York, 1968.
2. Miller, E. K., L. Medgyesi-Mitschang, E. H. Newman, and Eds., Computational Electromagnetics: Frequency-Domain Method of Moments, New York: IEEE Press, 1992.
3. Bouche, D. P., F. A. Molinet, and R. Mittra, "Asymptotic and hybrid techniques for electromagnetic scattering," Proc. IEEE, Vol. 81, No. 12, 1658-1684, Dec. 1993.
doi:10.1109/5.248956 Google Scholar
4. Thiele, G. A., "Overview of selected hybrid method in radiating system analysis," Proc. IEEE, Vol. 80, No. 1, 67-78, Jan. 1992.
doi:10.1109/5.119567 Google Scholar
5. Medgyesi-Mitschang, L. N. and D. S. Wang, "Hybrid methods in computational electromagnetics: A review," Computer Physics Communications, Vol. 68, 76-94, May 1991.
doi:10.1016/0010-4655(91)90194-P Google Scholar
6. Canning, F. X., "The impedance matrix localization method (IML) uses," IEEE AP, Vol. 41, No. 5, 1659-667, 1993. Google Scholar
7. Canning, F. X., "The impedance matrix localization method (IML) permits solution of large scatterers," IEEE Magnetics, Vol. 27, 4275-4277, Sept. 1991.
doi:10.1109/20.105046 Google Scholar
8. Canning, F. X., "The impedance matrix localization method (IML) for MM calculation," IEEE AP Magazine, Vol. 32, l8-30, Oct. 1990. Google Scholar
9. Canning, F. X., "Transformations that produce a sparse moment method matrix," J. Electromag. Wave Applicat., Vol. 4, No. 9, 893-913, 1990. Google Scholar
10. Coifman, R., V. Rohklin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag.,, Vol. 35, 7-12, 1993.
doi:10.1109/74.250128 Google Scholar
11. Rohklin, V., "Rapid solution of integral equations of scattering in two dimensions," J. Comput. Phys., Vol. 86, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C Google Scholar
12. Rohklin, V., "Rapid solution of integral equations of classical potential theory," J. Comput. Phys., Vol. 60, 187-207, 1985.
doi:10.1016/0021-9991(85)90002-6 Google Scholar
13. Boag, A. and R. Mittra, "Complex multipole beam approach to electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. AP-42, 366-372, Mar. 1994.
doi:10.1109/8.280723 Google Scholar
14. Michielssen, E. and A. Boag, "Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems," Microwave Opt. Tech. Lett., Vol. 7, No. 17, 790-795, Dec. 1994.
doi:10.1002/mop.4650071707 Google Scholar
15. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," 11th Annu. Rev. Progress ACES, Monterey, CA, 614-620, Mar. 1995. Google Scholar
16. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Trans. Antennas Propagat., Vol. AP-44, No. 8, 1086-1093, Aug. 1996.
doi:10.1109/8.511816 Google Scholar
17. Chew, W. C., J. M. Jin, C. C. Lu, E. Michielssen, and J. M. Song, "Fast solution methods in electromagnetics," IEEE Trans. Antennas Propagat., Vol. AP-45, No. 3, 533-543, Mar. 1997.
doi:10.1109/8.558669 Google Scholar
18. Su, Chaowei and T. K. Sarkar, "A multiscale moment method for solving Fredholm integral equation of the first kind," J. Electromag. Waves Appl., Vol. 12, 97-101, 1998.
doi:10.1163/156939398X00089 Google Scholar
19. Su, Chaowe and T. K. Sarkar, "Electromagnetic scattering from coated strips utilizing the adaptive multiscale moment method," Progress In Electromagnetics Research, Vol. 8, 173-208, 1998. Google Scholar
20. Su, Chaowei and T. K. Sarkar, "Electromagnetic scattering from two-dimensional electrically large perfectly conducting objects with small cavities and humps by use of adaptive multiscale moment methods (AMMM)," J. Electromag. Waves Appl., Vol. 12, 885-906, 1998.
doi:10.1163/156939398X01114 Google Scholar
21. Mittra, R., Y. Rahmat-Samii, D. V. Jamnejad, and W. A. Davis, "A new look at the thin-plate scattering problem," Rad. Sci., Vol. 8, No. 10, 869-875, Oct. 1973.
doi:10.1029/RS008i010p00869 Google Scholar
22. Rahmat-Samii, Y. and R. Mittra, "Integral equation solution and RCS computation of a thin rectangular plate," IEEE Trans. Antennas Propagat., Vol. AP-22, No. 7, 608-610, July 1974. Google Scholar
23. Tran, T. V. and A. McCowen, "An improved pulse-basis conjugate gradient FFT method for the thin conducting plate problem," IEEE Trans. Antennas Propagat., Vol. AP-41, No. 2, 185-189, Feb. 1993.
doi:10.1109/8.214609 Google Scholar
24. Peters, T. J. and J. L. Volakis, "Application of a conjugate gradient FFT method to scattering from thin planar material plates," IEEE Trans. Antennas Propagat., Vol. 36, No. 4, 518-526, Apr. 1988.
doi:10.1109/8.1141 Google Scholar
25. Barkeshli, K. and J. L. Volakis, "On the implementation of the conjugate gradient Fourier transform method for scattering by planar plates," IEEE Trans. Antennas Propagat. Mag., Vol. 32, 19-29, Apr. 1990. Google Scholar
26. Catedra, M. F., J. G. Cuevas, and L. Nuno, "A scheme to analyze conducting plates of resonant size using the conjugate gradient method and the fast Fourier transform ," IEEE Trans. Antennas Propagat., Vol. AP-36, No. 12, 1744-1752, Dec. 1988.
doi:10.1109/8.14396 Google Scholar
27. Shen, C. Y., K. J. Glover, M. I. Sancer, and A. D. Varvatsis, "The discrete Fourier transform method of solving different-integral equations in scattering theory," IEEE Trans. Antennas Propagat., Vol. AP-37, No. 8, 1032-1041, Aug. 1988.
doi:10.1109/8.34141 Google Scholar
28. Zhamborn, A. P. M. and P. M. van den Berg, "A weak form of the conjugate gradient FFT method for plate problems," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 2, 224-228, Feb. 1991. Google Scholar