1. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
2. Engheta, N., "A note on fractional calculus and images method for dielectric spheres," J. Electromagnetic Waves and Appl., Vol. 9, 1179-1188, Sept. 1995. Google Scholar
3. Engheta, N., "On fractional calculus and fractional multipoles in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 44, 554-566, Apr. 1996.
doi:10.1109/8.489308 Google Scholar
4. Engheta, N., "Electrostatic Fractional images methods for perfectly conducting wedges and cones," IEEE Trans. Antennas Propagat., Vol. 44, 1565-1574, Dec. 1996.
doi:10.1109/8.546242 Google Scholar
5. Engheta, N., "Use of fractional integration to propose some ``fractional" solutions for the scalar Helmholtz equation," Progress in Electromagnetics Research (PIER), Jin A. Kong (Ed.), Monograph Series Vol. 12, 107-132, 1996. Google Scholar
6. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antenna and Propagation Mag., Vol. 39, 35-46, 1997.
doi:10.1109/74.632994 Google Scholar
7. Engheta, N., "Fractional curl operator in electromagnetics," Microwave and Optical Technology Letters, Vol. 17, No. 2, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E Google Scholar
8. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978.
9. Naqvi, Q. A. and A. A. Rizvi, "Fractional solutions to the Helmholtz’s equation in a multilayered geometry," Progress in Electromagnetics Research (PIER), Jin A. Kong (Ed.), Monograph Series Vol. 21, 319-335 1999. Google Scholar