1. Zaki, K. A. and A. E. Atia, "Modes in dielectric-loaded waveguides and resonators," IEEE Trans. on Microwave Theory and Technologies, Vol. MTT-31, No. 12, 1039-1045, Dec. 1983.
doi:10.1109/TMTT.1983.1131658 Google Scholar
2. Kajbez, D., A. V. Glisson, and J. James, "Computed modal field distribution for isolated dielectric resonators," 1984 IEEE MTT-S International Microwave Symposium Digest, 193-195, June 1984. Google Scholar
3. Zaki, K. A. and C. Chen, "Intensity and distribution of hybrid-mode fields in dielectric-loaded waveguides," IEEE Trans. on Microwave Theory and Technologies, Vol. MTT-33, No. 12, 1442-1447, Dec. 1985.
doi:10.1109/TMTT.1985.1133237 Google Scholar
4. Maj, S. and M. Pospieszalski, "A composite cylindrical dielectric resonator," 1984 IEEE MTT-S International Microwave Symposium Digest, 190-192, June 1984. Google Scholar
5. Krupka, J., "Optimization of an electromagnetic basis for determination of the resonant frequency of microwave cavities partially filled with a dielectric," IEEE Trans. on Microwave Theory and Technologies, Vol. MTT-31, No. 3, 302-305, March 1983.
doi:10.1109/TMTT.1983.1131480 Google Scholar
6. Kajfez, D., A. V. Glisson, and J. James, "Computed modal field distribution for isolated dielectric resonators," IEEE Trans. on Microwave Theory and Technologies, Vol. MTT-32, No. 12, 1609-1616, Dec. 1984.
doi:10.1109/TMTT.1984.1132900 Google Scholar
7. Ayappa, K. G., H. T. Davis, E. A. Davis, and J. Gordon, "Two-dimensional finite element analysis of microwave heating," AIChE Journal, Vol. 38, 1577-1592, Oct. 1992. Google Scholar
8. Jia, X. and P. Jolly, "Simulation of microwave field and power distribution in a cavity by a three-dimensional finite element method," Journal of Microwave Power and Electromagnetic Energy, Vol. 27, No. 1, 11-22, 1992.
doi:10.1080/08327823.1992.11688166 Google Scholar
9. Liu, F., I. Turner, and M. Bialkowski, "A finite-difference time-domain simulation of power density distribution in a dielectric loaded microwave cavity," Journal of Microwave Power and Electromagnetic Energy, Vol. 29, 138-148, 1994.
doi:10.1080/08327823.1994.11688242 Google Scholar
10. Zhao, H., I. Turner, and F. W. Liu, "Numerical simulation of the power density distribution generated in a multimode cavity by using the method of lines technique to solve directly for the electric field," IEEE Trans. on Microwave Theory and Technologies, Vol. MTT-44, 2185-2194, 1996.
doi:10.1109/22.556446 Google Scholar
11. Torres, F. and B. Jecko, "Complete FDTD analysis of microwave heating processing in frequency-dependent and temperature-dependent media," IEEE Trans. Microwave Theory Tech., Vol. MTT-45, 108-117, 1997.
doi:10.1109/22.552039 Google Scholar
12. Fu, W. and A. Metaxas, "Numerical prediction of three-dimensional power density distribution in a multi-mode cavity," Journal of Microwave Power and Electromagnetic Energy, Vol. 29, 67-75, 1994.
doi:10.1080/08327823.1994.11688233 Google Scholar
13. Tai, C. T., "Dyadic Green’s Functions in Electromagnetic Theory," IEEE Press, 2nd Ed., 1993.
14. Johnson, W. A., A. Q. Howard, and D. G. Dudley, "On the irrotational component of the electric Green’s function," Radio Science, Vol. 14, 961-967, 1979.
doi:10.1029/RS014i006p00961 Google Scholar
15. Collin, R. E., "On the incompleteness of E and H modes in waveguides," Can. J. Phys., Vol. 51, 1135-1140, 1973.
doi:10.1139/p73-150 Google Scholar
16. Howard, A. Q., "On the longitudinal component of the Green’s function dyadic," Proc. IEEE, Vol. 62, 1704-1705, 1974.
doi:10.1109/PROC.1974.9686 Google Scholar
17. Tai, C. T., "Equivalent layers of surface charge, current sheet, and polarization in the eigenfunction expansions of Green’s functions in electromagnetic theory," IEEE Trans. Antennas and Propagation, Vol. AP-20, 733-739, 1981.
doi:10.1109/TAP.1981.1142660 Google Scholar
18. Tai, C. T. and P. Rozenfeld, "Different representations of dyadic Green’s functions for a rectangular cavity," IEEE Trans. Microwave Theory Tech., Vol. MTT-24, 597-601, 1976.
doi:10.1109/TMTT.1976.1128914 Google Scholar
19. Zhang, J. and K. M. Chen, "Mode-matching analysis of the induced electric field in a material sample placed within an energized cylindrical cavity,", current issue. Google Scholar
20. Hansen, W. W., "A new type of expansion in radiation problems," Physics Review, Vol. 47, 139-143, 1935.
doi:10.1103/PhysRev.47.139 Google Scholar
21. Hansen, W. W., "Directional characteristic of antenna over a plane earth ," Journal of Applied Physics, Vol. 7, 460-465, 1936. Google Scholar
22. Hansen, W. W., "Transformations useful in certain antenna calculation," Journal of Applied Physics, Vol. 8, 282-286, 1937.
doi:10.1063/1.1710293 Google Scholar
23. Zhang, J., "Interaction of electromagnetic fields with a material sample placed within an energized cavity,", Ph.D. Dissertation, Michigan State University, 1998. Google Scholar
24. Collin, R. E., "Field Theory of Guided Waves," IEEE Press, 2nd Ed., 1991.
25. Stratton, J. A., "Electromagnetic Theory," McGraw-Hill Book Company, Inc., New York, NY, 1941.
26. Tai, C. T., "On the eigenfunction expansion of dyadic Green’s functions," Proc. IEEE, Vol. 61, 480-481, Apr. 1973.
doi:10.1109/PROC.1973.9075 Google Scholar
27. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.