Vol. 28
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
A Detailed Examination of the Finite-Volume, Time-Domain Method for Maxwell's Equations
By
, Vol. 28, 231-252, 2000
Abstract
Citation
Jeffrey Young, R. O. Nelson, and D. V. Gaitonde, "A Detailed Examination of the Finite-Volume, Time-Domain Method for Maxwell's Equations," , Vol. 28, 231-252, 2000.
doi:10.2528/PIER99100101
References

1. Shang, J. S. and R. M. Fithen, "A comparative study of characteristic-based algorithms for the Maxwell equations," J. Comp. Phys., Vol. 125, 378-394, 1996.
doi:10.1006/jcph.1996.0100        Google Scholar

2. Palaniswamy, S., W. F. Hall, and V. Shankar, "Numerical solution to Maxwell’s equations in the time domain on nonuniform grids," Radio Sci., Vol. 31, No. 4, 1996.
doi:10.1029/96RS00783        Google Scholar

3. Madsen, N. K. and R. W. Ziolkowski, "A three-dimensional modified finite volume technique for Maxwell’s equations," Electromagnetics, Vol. 10, 147-161, 1990.
doi:10.1080/02726349008908233        Google Scholar

4. Anderson, W. K., J. L. Thomas, and B. van Leer, "A comparison of finite volume flux vector splittings for the Euler equations," AIAA 23rd Aerospace Sciences Meeting, AIAA-85-0122, Reno, NV, Jan. 1985.        Google Scholar

5. Richtmyer, R. and K. Morton, Difference Methods for Initial-Value Problems, Wiley, New York, 1967.

6. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

7. Gaitonde, D., J. Shang, and J. L. Young, "Practical aspects of higher-order numerical schemes for wave propagation phenomena," Intl. J. Num. Methods in Engr., Vol. 45, 1849-1869.        Google Scholar

8. Anderson, D. A., J. C. Tannehill, and R. H. Pletcher, Computational Fluid and Mechanics and Heat Transfer, Taylor & Francis, Bristol, PA, 1984.

9. Ray, S. L., "Grid decoupling in finite element solutions of Maxwell’s equations," IEEE Trans. Ant. Propagat., Vol. 40, No. 4, 1992.
doi:10.1109/8.138847        Google Scholar

10. Shang, J. S. and D. Gaitonde, Characteristic-based, timedependent maxwell equation solvers on a general curvilinear fram, Vol. 33, No. 3, 491-498, AIAA Journal, 1995.

11. Al-Khafaji, A. W., Numerical Methods in Engineering Practice, Holt, Rinehart and Winstron, New York, 1986.

12. Gaitonde, D. and J. S. Shang, "Optimized compact-differencebased finite-volume schemes for linear wave phenomena," J. Comp. Phys., Vol. 138, 617-643, 1997.
doi:10.1006/jcph.1997.5836        Google Scholar

13. Gottlieb, D. and B. Yang, "Comparisons of staggered and nonstaggered schemes for Maxwell’s equations," 12 Annual Rev. of Progress in Appl. Comp. Electromagn., 1122-1131, Monterrey, CA, 1996.        Google Scholar

14. Thomas, L. H., "Elliptic problems in linear difference equations over a network," Watson Sci. Comput. Lab. Rept., Columbia University, New York, 1949.        Google Scholar

15. Gustafsson, B., "The convergence rate for difference approximations to mixed initial boundary value problems," Math. Comp., Vol. 29, 396-406, 1975.
doi:10.1090/S0025-5718-1975-0386296-7        Google Scholar

16. Zhao, L. and A. C. Cangellaris, "GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids ," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 12, 1996.
doi:10.1109/22.554601        Google Scholar

17. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1986.

18. Fyfe, D. J., "Economical evaluation of Runge-Kutta formulae ," Math. Comput., Vol. 20, 392-398, 1966.
doi:10.1090/S0025-5718-1966-0202317-0        Google Scholar

19. Williamson, J. H., "Low-storage Runge-Kutta schemes," J. Comp. Physics., Vol. 35, 48-56, 1980.
doi:10.1016/0021-9991(80)90033-9        Google Scholar

20. Shang, J., A perspective of computational electromagnetics in the time domain, 28th AIAA Plasmadynamics & Lasers Conference, AIAA 97-2356, Atlanta, GA, June 1997.