1. Shang, J. S. and R. M. Fithen, "A comparative study of characteristic-based algorithms for the Maxwell equations," J. Comp. Phys., Vol. 125, 378-394, 1996.
doi:10.1006/jcph.1996.0100 Google Scholar
2. Palaniswamy, S., W. F. Hall, and V. Shankar, "Numerical solution to Maxwell’s equations in the time domain on nonuniform grids," Radio Sci., Vol. 31, No. 4, 1996.
doi:10.1029/96RS00783 Google Scholar
3. Madsen, N. K. and R. W. Ziolkowski, "A three-dimensional modified finite volume technique for Maxwell’s equations," Electromagnetics, Vol. 10, 147-161, 1990.
doi:10.1080/02726349008908233 Google Scholar
4. Anderson, W. K., J. L. Thomas, and B. van Leer, "A comparison of finite volume flux vector splittings for the Euler equations," AIAA 23rd Aerospace Sciences Meeting, AIAA-85-0122, Reno, NV, Jan. 1985. Google Scholar
5. Richtmyer, R. and K. Morton, Difference Methods for Initial-Value Problems, Wiley, New York, 1967.
6. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.
7. Gaitonde, D., J. Shang, and J. L. Young, "Practical aspects of higher-order numerical schemes for wave propagation phenomena," Intl. J. Num. Methods in Engr., Vol. 45, 1849-1869. Google Scholar
8. Anderson, D. A., J. C. Tannehill, and R. H. Pletcher, Computational Fluid and Mechanics and Heat Transfer, Taylor & Francis, Bristol, PA, 1984.
9. Ray, S. L., "Grid decoupling in finite element solutions of Maxwell’s equations," IEEE Trans. Ant. Propagat., Vol. 40, No. 4, 1992.
doi:10.1109/8.138847 Google Scholar
10. Shang, J. S. and D. Gaitonde, Characteristic-based, timedependent maxwell equation solvers on a general curvilinear fram, Vol. 33, No. 3, 491-498, AIAA Journal, 1995.
11. Al-Khafaji, A. W., Numerical Methods in Engineering Practice, Holt, Rinehart and Winstron, New York, 1986.
12. Gaitonde, D. and J. S. Shang, "Optimized compact-differencebased finite-volume schemes for linear wave phenomena," J. Comp. Phys., Vol. 138, 617-643, 1997.
doi:10.1006/jcph.1997.5836 Google Scholar
13. Gottlieb, D. and B. Yang, "Comparisons of staggered and nonstaggered schemes for Maxwell’s equations," 12 Annual Rev. of Progress in Appl. Comp. Electromagn., 1122-1131, Monterrey, CA, 1996. Google Scholar
14. Thomas, L. H., "Elliptic problems in linear difference equations over a network," Watson Sci. Comput. Lab. Rept., Columbia University, New York, 1949. Google Scholar
15. Gustafsson, B., "The convergence rate for difference approximations to mixed initial boundary value problems," Math. Comp., Vol. 29, 396-406, 1975.
doi:10.1090/S0025-5718-1975-0386296-7 Google Scholar
16. Zhao, L. and A. C. Cangellaris, "GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids ," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 12, 1996.
doi:10.1109/22.554601 Google Scholar
17. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1986.
18. Fyfe, D. J., "Economical evaluation of Runge-Kutta formulae ," Math. Comput., Vol. 20, 392-398, 1966.
doi:10.1090/S0025-5718-1966-0202317-0 Google Scholar
19. Williamson, J. H., "Low-storage Runge-Kutta schemes," J. Comp. Physics., Vol. 35, 48-56, 1980.
doi:10.1016/0021-9991(80)90033-9 Google Scholar
20. Shang, J., A perspective of computational electromagnetics in the time domain, 28th AIAA Plasmadynamics & Lasers Conference, AIAA 97-2356, Atlanta, GA, June 1997.