Vol. 28
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Microwave Imaging of Parallel Perfectly Conducting Cylinders Using Real-Coded Genetic Algorithm Coupled with Newton-Kantorivitch Method
By
, Vol. 28, 275-294, 2000
Abstract
Citation
A. Qing, and C. Lee, "Microwave Imaging of Parallel Perfectly Conducting Cylinders Using Real-Coded Genetic Algorithm Coupled with Newton-Kantorivitch Method," , Vol. 28, 275-294, 2000.
doi:10.2528/PIER99111102
References

1. Tijhuis, A. J., Electromagnetic Inverse Profiling: Theory and Numerical Implementation, VNU Science Press, Utrecht, The Netherlands, 1987.

2. Chew, W. C., Waves and Fields in Inhomogeneous Media, van Nostrand Reinhold, New York, 1990.

3. Qing, A., "Electromagnetic scattering and inverse scattering,", Ph.D. Dissertation, Southwest Jiaotiong University, Chengdu, May 1997.        Google Scholar

4. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed., Springer-Verlag, New York, 1998.

5. Chen, L. C., et al. "Improved performance of a subsurface radar target identification system through antenna design," IEEE Trans. Antennas Propagat., Vol. AP-29, 307-311, 1981.        Google Scholar

6. Bolomey, J. C., et al. "Microwave diffraction tomography for biomedical applications," IEEE Trans. Micro. Theory Tech., Vol. MTT-30, 1998-2000, 1982.        Google Scholar

7. Pichot, C. and L. Chommeloux, "Algorithms for active microwave imaging-biomedical and civil engineering applications," Proc. US-France Conf. On Near Field Microwave Imaging, Atlanta, 1985.        Google Scholar

8. Farhat, H. H., "Microwave diversity imaging and automated target identification based on models of neural networks," Proc. IEEE, Vol. 77, 670-681, 1989.        Google Scholar

9. Wang, Y. M. and W. C. Chew, "Limited angle inverse scattering problems and their applications for geophysical explorations," Int. J. Imaging Systems Tech., Vol. 2, No. 2, 96-111, 1990.        Google Scholar

10. Louis, A. K., "Medical imaging: state of the art and future development," Inverse Problems, Vol. 8, 709-738, 1992.        Google Scholar

11. Liu, Q. H., "Nonlinear inversion of electrode-type resistivity measurements," IEEE Trans. Geosci. Remote Sens., GE-32(3), 499-507, 1994.        Google Scholar

12. Meaney, P. M., K. D. Pausen, and J. T. Chang, "Near-field microwave imaging of biologically-based materials using a monopole transceiver system," IEEE Trans. Micro. Theory Tech., Vol. MTT-46, No. 1, 31-45, 1998.        Google Scholar

13. Golden, K. M., et al. "Inverse electromagnetic scattering models for sea ice," IEEE Trans. Geosci. Remote Sens., GE-36(5), 1675-1704, 1998.        Google Scholar

14. Bube, K. P. and R. Burridge, "The one-dimensional inverse problem of reflection seismology," SIAM Rev., Vol. 25, No. 4, 497-559, 1983.        Google Scholar

15. Devancy, A. J., "Nonuniqueness in the inverse scattering problem," J. Math. Phys., Vol. 19, No. 7, 1526-1531, 1978.        Google Scholar

16. Sarkar, T. K., D. D. Weiner, and V. K. Jain, "Some mathematical considerations in dealing with the inverse problems," IEEE Trans. Antennas Propagat., Vol. AP-29, 373-379, 1981.        Google Scholar

17. HoLmann, B. and O. Scherzer, "Factors influencing the illposedness of nonlinear problems," Inverse Problems, Vol. 10, 1277-1297, 1994.        Google Scholar

18. Habashy, T. M. and R. Mittra, "On some inverse methods in electromagnetics," J. Electromag. Waves Appli, Vol. 1, No. 1, 25-58, 1987.        Google Scholar

19. Lewis, R. M., "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., Vol. AP-17, 308-314, 1969.        Google Scholar

20. Bojarski, N. N., "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., Vol. AP-30, 980-989, 1982.        Google Scholar

21. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. Micro. Theory Tech., Vol. MTT-32, No. 8, 860-874, 1984.        Google Scholar

22. Sezginer, A., "Forward and inverse problems in transient electromagnetic fields,", Ph.D. Dissertation, M.I.T., 1985.        Google Scholar

23. Burridge, R., "The Gel’fand-Levitan, the Marchenko, and the Gopinath-Sondhi integral equation of inverse scattering theory, regarded in the context of inverse impulse-response problems," Waves Motion, Vol. 2, 305-323, 1980.        Google Scholar

24. Balanis, G. N., "The plasma inverse problem," J. Math. Phys., Vol. 13, 1001-1005, 1972.        Google Scholar

25. Habashy, T. M., "A generalized Gel’fand-Levitan-Marchenko integral equation," Inverse Problems, Vol. 7, 703-711, 1991.        Google Scholar

26. Keller, J. B., "Accuracy and validity of Born and Rytov approximations," J. Opt. Soc. Am., Vol. 59, 1003-1004, 1969.        Google Scholar

27. Moghaddam, M. and W. C. Chew, "Nonlinear two-dimensional velocity profile inversion using time-domain data," IEEE Trans. Geosci. Remote Sens., GE-30(1), 147-156, 1992.        Google Scholar

28. Qing, A. and L. Jen, "Microwave imaging of dielectric cylinder in layered media," J. Electromag. Waves Appli., Vol. 11, No. 2, 259-269, 1997.        Google Scholar

29. Chew, W. C. and Q. H. Liu, "Inversion of induction tool measurements using the distorted Born iterative method and CG-FFHT," IEEE Trans. Geosci. Remote Sens., GE-32(4), 878-884, 1994.        Google Scholar

30. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity using the distorted Born iterative method," IEEE Trans. Medical Imaging, Vol. MI-9, 218-225, 1990.        Google Scholar

31. Roger, A., "Newton-Kantorivitch algorithm applied to electromagnetic inverse problem," IEEE Trans. Antennas Propagat., Vol. AP-29, 232-238, 1981.        Google Scholar

32. Chiu, C. C. and W. W. Kiang, "Microwave imaging of multiple conducting cylinders," IEEE Trans. Antennas Propagat., Vol. AP-40, 933-941, 1992.        Google Scholar

33. Qing, A. and L. Jen, "A novel method for microwave imaging of dielectric cylinder in layered media," J. Electromag. Waves Appli., Vol. 11, No. 1, 1337-1348, 1997.        Google Scholar

34. Colton, D. and P. Monk, "A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region," SIAM J. Appl. Math., Vol. 45, 1039-1053, 1985.        Google Scholar

35. Colton, D. and P. Monk, "A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II," SIAM J. Appl. Math., Vol. 46, 506-523, 1986.        Google Scholar

36. Hettlich, F., "Two methods for solving an inverse conductive scattering problem," Inverse Problems, Vol. 10, 375-385, 1994.        Google Scholar

37. Chew, W. C. and G. P. Otto, "Microwave imaging of multiple conducting cylinders using local shape functions," IEEE Micro. Guided Wave Lett., Vol. 2, No. 7, 284-286, 1992.        Google Scholar

38. Weedon, W. H. and W. C. Chew, "Time-domain inverse scattering using the local shape function method," Inverse Problems, Vol. 9, 551-564, 1993.        Google Scholar

39. Otto, G. P. and W. C. Chew, "Inverse scattering of Hz waves using local shape-function imaging: a T-matrix formulation," Int. J. Imaging Systems Tech., Vol. 5, No. 1, 22-27, 1994.        Google Scholar

40. Otto, G. P. and W. C. Chew, "Microwave inverse scatteringlocal shape function imaging for improved resolution of strong scatterers," IEEE Trans. Micro. Theory Tech., Vol. MTT-42, No. 1, 137-141, 1994.        Google Scholar

41. Kleinman, R. E. and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," J. Comput. Appl. Math., Vol. 42, No. 1, 17-35, 1992.        Google Scholar

42. Kleinman, R. E. and P. M. van den Berg, "An extended rangemodified technique for profile inversion," Radio Sci., Vol. 28, 877-884, 1993.        Google Scholar

43. van den Berg, P. M. and M. van der Horst, "Nonlinear inversion in induction logging using the modified gradient method," Radio Sci., Vol. 30, 1355-1369, 1995.        Google Scholar

44. Ney, M. M., A. M. Smith, and S. Studchly, "A solution of electromagnetic imaging using pseudoinverse transformation," IEEE Trans. Med. Imaging, Vol. MI-3, 155-162, 1984.        Google Scholar

45. Tarantola, A. and B. Valette, "Generalized nonlinear inverse problems solved using the least squares criterion," Rev. Geophy. Space Phy., Vol. 20, 219-232, 1982.        Google Scholar

46. Tarantala, A., Inverse Problem Theory, Elsevire Science, New York, 1987.

47. Chiu, C. C. and P. T. Liu, "Image reconstruction of a perfectly conducting cylinder by the genetic algorithm," IEE Proc. Microw., Antennas Propagat., Vol. 143, No. 3, 249-253, 1996.        Google Scholar

48. Qing, A. and C. K. Lee, "Shape reconstruction of a perfectly conducting cylinder using real-coded genetic algorithm," Dig. 1999 IEEE AP-S and URSI Symp., 2148-2151, Orlando, 1999.        Google Scholar

49. Qing, A., C. K. Lee, and L. Jen, "Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm," J. Electromag. Waves Appli., Vol. 13, No. 8, 1121-1143, 1999.        Google Scholar

50. Qing, A. and S. Zhong, "Microwave imaging of two-dimensional perfectly conducting objects using real-coded genetic algorithm," Dig 1998 IEEE AP-S and URSI Symp., 726-729, 1998.        Google Scholar

51. Xiao, F. and H. Yabe, "Microwave imaging of perfectly conducting cylinders from real data by micro genetic algorithm couple with deterministic method," IEICE trans. Electron., Vol. E81-C, No. 12, 1784-1792, 1998.        Google Scholar

52. Meng, Z. Q., T. Takenaka, and T. Tanaka, "Image reconstruction of two-dimensional impenetrable objects using genetic algorithm," J. Electromag. Waves Appli., Vol. 13, No. 1, 95-118, 1999.        Google Scholar

53. Holland, J. H., Adaptation in Natural and Artificial Systems, Michigan Univ., Ann Arbot, Michigan, 1975.

54. Davis, L., Genetic Algorithm and Simulated Annealing, Pittman, London, 1987.

55. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Weiley, Reading, MA, 1989.

56. Chen, G. L., X. F.Wang, Z. Q. Zhuang, and d D. S.Wang, The Genetic Algorithms and Applications, People’s Telecommunication Press, Beijing, 1996, (in Chinese).

57. Michielssen, E., S. Ranjithan, and R. Mittra, "Optimal multilayer filter design using real coded genetic algorithm," IEE Proc. J, Vol. 139, No. 6, 413-420, 1992.        Google Scholar

58. Haupt, R., "Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems," IEEE Trans. Magn., Vol. 31, No. 3, 1932-1935, 1995.        Google Scholar

59. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas Propagat. Mag., Vol. 37, No. 2, 8-15, 1995.        Google Scholar

60. Weili, D. S. and E. Michiessen, "Genetic algorithm optimization applied to electromagnetics: a review," IEEE Trans. Antennas Propagat., Vol. AP-45, No. 3, 343-353, 1997.        Google Scholar

61. Yeo, B. K. and Y. Lu, "Array failure correction with a genetic algorithm," IEEE Trans. Antennas Propagat., Vol. AP-47, No. 5, 823-828, 1999.        Google Scholar

62. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, New York, 1993.