1. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2005.
2. Chu, L. J., "Physical limitations of omnidirectional antennas," J. Appl. Phys., Vol. 19, No. 12, 1163-1175, 1948.
doi:10.1063/1.1715038 Google Scholar
3. Hansen, R. C., "Fundamental limitations in antennas," Proc. IEEE, Vol. 69, No. 2, 170-181, 1981.
doi:10.1109/PROC.1981.11950 Google Scholar
4. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, 1996.
doi:10.1109/MAP.2004.1396731 Google Scholar
5. Best, S. R., "A discussion on the properties of electrically small self-resonant wire antennas," IEEE Aantennas Propag. Mag., Vol. 46, No. 6, 9-22, 2004.
doi:10.2528/PIERL07111907 Google Scholar
6. Kyi, Y. and J.-Y. Li, "Analysis of electrically small size conical antennas," Progress In Electromagnetics Research Letters, Vol. 1, 85-92, 2008.
doi:10.1109/TAP.2005.844415 Google Scholar
7. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TAP.2003.817561 Google Scholar
8. Ziolkowski, R. W. and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2626-2640, 2003.
doi:10.1109/TAP.2006.877179 Google Scholar
9. Ziolkowski, R. W. and A. Erentok, "Metamaterials-based efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2113-2130, 2006.
doi:10.1163/156939306779322620 Google Scholar
10. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322585 Google Scholar
11. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939307783152777 Google Scholar
12. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H.-L. Li, "FDTD study on scattering of metallic columu covered by double-negative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783134452 Google Scholar
13. Manzanares-Martinez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
doi:10.1163/156939307783134425 Google Scholar
14. Yang, R., Y.-J. Xie, D. Li, J. Zhang, and J. Jiang, "Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrates," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2321-2330, 2007. Google Scholar
15. Hamid, A.-K. and F. R. Cooray, "Radiation characteristics of a spheroidal slot antenna coated with isorefractive materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1605-1619, 2007.
doi:10.2528/PIERB07112803 Google Scholar
16. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112906 Google Scholar
17. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07121107 Google Scholar
18. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique Incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008. Google Scholar
19. Cui, T. J., H.-F. Ma, R. P. Liu, B. Zhao, Q. Cheng, and J. Y. Chin, "A symmetrical circuit model describing all kinds of circuit metamaterials," Progress In Electromagnetics Research B, Vol. 5, 63-76, 2008.
doi:10.2528/PIERL07111809 Google Scholar
20. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide-angle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008. Google Scholar
21. Flammer, C., Spheroidal Wave Functions, Stanford University Press, 1957.
22. Cooray, M. F. R. and I. R. Ciric, "Scattering of electromagnetic waves by a coated dielectric spheroid," Journal of Electromagnetic Waves and Applications, Vol. 6, 1491-1507, 1992.
doi:10.1163/156939305775701895 Google Scholar
23. Huang, M. D. and S. Y. Tan, "Spheroidal phase mode processing for antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1431-1442, 2005. Google Scholar
24. Schelkunoff, S. A., Advanced Antenna Theory, Wiley, 1952.
25. Do-Nhat, T. and R. H. MacPhie, "The input admittance of thin prolate spheroidal dipole antennas with finite gap widths," IEEE Trans. Antennas Propag., Vol. 43, No. 11, 1243-1252, 1995.
doi:10.1109/TAP.2002.803950 Google Scholar
26. Li, L. W., M. S. Leong, T. S. Yeo, and Y. B. Gan, "“Electromagnetic radiation from a prolate spheroidal antenna enclosed in a confocal spheroidal radome," IEEE Trans. Antennas Propag., Vol. 50, No. 11, 1525-1533, 2002.
doi:10.1109/TAP.2005.863109 Google Scholar
27. Capoglu, I. R. and G. S. Smith, "The input admittance of a prolate-spheroidal monopole antenna fed by a magnetic frill," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 572-585, 2006. Google Scholar