1. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection — Experimental investigation of simple tumors models," IEEE Trans. Microwave Theory Tech., Vol. 53, 3312-3319, Nov. 2005.
doi:10.1109/TMTT.2005.857330 Google Scholar
2. Irishina, N., M. Moscoso, and O. Dorn, "Detection of small tumors in microwave medical imaging using level sets and music," PIERS Online, Vol. 2, 43-47, 2006.
doi:10.2529/PIERS050905120050 Google Scholar
3. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802 Google Scholar
4. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, 53-63, 2006.
doi:10.1163/156939306775777350 Google Scholar
5. Yu, T. and L. Carin, "Three-dimensional inverse scattering of a dielectric target embedded in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 42, 957-973, 2004.
doi:10.1109/TGRS.2003.820601 Google Scholar
6. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902 Google Scholar
7. Salman, A. O., S. Gavrilov, and A. Vertiy, "Subsurface microwave imaging by using angular spectrum of electromagnetic field," Journal of Electromagnetic Waves and Applications, Vol. 16, 1511-1529, 2002.
doi:10.1163/156939302X00958 Google Scholar
8. Bolomey, J. Ch., Frontiers in Industrial Process Tomography, Engineering Foundation, 1995.
9. Weedon, W. H., W. C. Chew, and P. E. Mayes, "A step-frequency radar imaging system for microwave nondestructive evaluation," Progress In Electromagnetics Research, Vol. 28, 121-146, 2000.
doi:10.2528/PIER99062501 Google Scholar
10. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propagat., Vol. 37, 918-926, July 1989.
doi:10.1109/8.29386 Google Scholar
11. Miller, E. L. and A. S. Willsky, "A multiscale, statistically based inversion scheme for linearized inverse scattering problems," IEEE Trans. Geosci. Remote Sensing, Vol. 34, 346-357, Mar. 1996.
doi:10.1109/36.485112 Google Scholar
12. Miller, E. L., "Statistically based methods for anomaly characterization in images from observations of scattered radiation," IEEE Trans. Image Processing, Vol. 8, 92-101, Jan. 1999.
doi:10.1109/83.736694 Google Scholar
13. Miller, E. L. and A. S. Willsky, "Wavelet-based methods for nonlinear inverse scattering problem using the extended Born approximation," Radio Sci., Vol. 31, 51-65, Jan. 1996.
doi:10.1029/95RS03130 Google Scholar
14. Bucci, O. M., L. Crocco, and T. Isernia, "An adaptive wavelet-based approach for non destructive evaluation applications," Proc. IEEE Antennas and Propagation Symp., Vol. 3, 1756-1759, 2000. Google Scholar
15. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging," IEEE Trans. Microwave Theory Tech., Vol. 51, 1162-1173, Apr. 2003.
doi:10.1109/TMTT.2003.809677 Google Scholar
16. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, 687-719, Mar. 1999.
doi:10.1163/156939399X01113 Google Scholar
17. Rao, T. and X. Chen, "Analysis of the time-reversal operator for a single cylinder under two-dimensional settings," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, 2153-2165, 2006.
doi:10.1163/156939306779322503 Google Scholar
18. Litman, A., D. Lesselier, and F. Santosa, "Reconstruction of two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Problems, Vol. 14, 685-706, June 1998.
doi:10.1088/0266-5611/14/3/018 Google Scholar
19. Ferraye, R., J.-Y. Dauvignac, and C. Pichot, "Reconstruction of complex and multiple shape object contours using a level set method," Journal ofEle ctromagnetic Waves and Applications, Vol. 17, 153-181, 2003.
doi:10.1163/156939303322235770 Google Scholar
20. Bucci, O. M., A. Capozzoli, and G. D'Elia, "A novel approach to scatterer localization problem," IEEE Trans. Antennas Propagat., Vol. 51, 2079-2090, Aug. 2003.
doi:10.1109/TAP.2003.812233 Google Scholar
21. Caorsi, S., M. Donelli, and A. Massa, "Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Trans. Microwave Theory Tech., Vol. 52, 1217-1228, Apr. 2004.
doi:10.1109/TMTT.2004.825699 Google Scholar
22. Serra, J., Images Analysis and Mathematical Morphology, Academic Press, 1982.
23. Jain, A. K., Fundamentals of Digital Image Processing, Prentice-Hall, 1989.
24. Colton, D. and R. Krees, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1992.
25. Semenov, S. Y., A. E. Bulyshev, A. Abubakar, V. G. Posukh, Y. E. Sizov, A. E. Souvorov, P. M. van den Berg, and T. C. Williams, "Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches," IEEE Trans. Microwave Theory Tech., Vol. 53, 2284-2294, July 2005.
doi:10.1109/TMTT.2005.850459 Google Scholar
26. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 1697-1708, July 2000.
doi:10.1109/36.851968 Google Scholar
27. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. Microwave Theory Tech., Vol. 53, 1761-1776, May 2005.
doi:10.1109/TMTT.2005.847068 Google Scholar
28. Donelli, M., G. Franceschini, A. Martini, and A. Massa, "An integrated multi-scaling strategy based on a particle swarm algorithm for inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 2, 298-312, Feb. 2006.
doi:10.1109/TGRS.2005.861412 Google Scholar
29. Mertzios, B. G. and K. Tsirikolias, "Coordinate logic filters and their applications in image processing and pattern recognition," Circuits, Systems and Signal Processing, Vol. 17, 517-538, 1998.
doi:10.1007/BF01201506 Google Scholar
30. Zhong, X. M., C. Liao, W. Chen, Z. B. Yang, Y. Liao, and F. B. Meng, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves and Applications, Vol. 21, 25-34, 2007.
doi:10.1163/156939307779391786 Google Scholar
31. Thomas, V., C. Gopakumar, J. Yohannan, A. Lonappan, G. Bindu, A. V. P. Kumar, V. Hamsakutty, and K. T. Mathew, "A novel technique for localizing the scatterer in inverse profiling of two dimensional circularly symmetric dielectric scatterers using degree of symmetry and neural networks," Journal of Electromagnetic Waves and Applications, Vol. 19, 2113-2121, 2005.
doi:10.1163/156939305775570477 Google Scholar
32. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, 1761-1774, 2006.
doi:10.1163/156939306779292264 Google Scholar