1. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 19, 1353-1355, 2004.
doi:10.1126/science.1104467 Google Scholar
2. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 177401, 2006.
doi:10.1103/PhysRevLett.97.177401 Google Scholar
3. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407(6, 2009.
doi:10.1103/PhysRevB.79.035407 Google Scholar
4. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, No. 12, 121104(3), 2009.
doi:10.1103/PhysRevB.79.121104 Google Scholar
5. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ``U" split ring resonators," Appl. Phys. Lett., Vol. 97, No. 8, 081901(2), 2010. Google Scholar
6. Cheng, Y., Y. Nie, and R. Z. Gong, "Giant optical activity and negative refractive index using complementary U-shaped structure assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.
doi:10.2528/PIERM12070403 Google Scholar
7. Decker, M., M. W. Klein, M.Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett., Vol. 32, No. 7, 856-858, 2007.
doi:10.1364/OL.32.000856 Google Scholar
8. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.
doi:10.2528/PIER13011202 Google Scholar
9. Lee, S., Z. Wang, C. Feng, J. Jiao, A. Khan, and L. Li, "Circular dichroism in planar extrinsic chirality metamaterial at oblique incident beam," Opt. Commun., Vol. 309, 201-204, 2013.
doi:10.1016/j.optcom.2013.07.033 Google Scholar
10. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Taunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902 Google Scholar
11. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 221907-3, 2011.
doi:10.1063/1.3664774 Google Scholar
12. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, 195131, 2012.
doi:10.1103/PhysRevB.85.195131 Google Scholar
13. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.
doi:10.2528/PIER13050601 Google Scholar
14. Cheng, Y. Z., Y. Nie, X. Wang, and R. Z. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys., A Mater. Sci. Process., Vol. 111, No. 1, 209-215, 2013.
doi:10.1007/s00339-013-7546-1 Google Scholar
15. Wu, L., Z. Yang, Y. Cheng, R. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, "Circular polarization converters based on bi-layered asymmetrical split ring metamaterials," Applied Physics A, Vol. 116, No. 2, 643-648, 2014.
doi:10.1007/s00339-014-8252-3 Google Scholar
16. Ma, X., C. Huang, M. Pu, W. Pan, Y. Wang, and X. Luo, "Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial," Appl. Phys. Exp., Vol. 6, 022001, 2013.
doi:10.7567/APEX.6.022001 Google Scholar
17. Jackson, J. D., Classical Electrodynamics, 3rd Ed., 205-207, Wiley, 1999.
18. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photon., Vol. 3, 157-162, 2009.
doi:10.1038/nphoton.2009.4 Google Scholar
19. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, No. 2, 1593-1595, 2010.
doi:10.1364/OL.35.001593 Google Scholar
20. Powell, D. A., K. Hannam, I. V. Shadrivov, and Y. S. Kivshar, "Near-field interaction of twisted split-ring resonators," Phys. Rev. B, Vol. 83, 235420, 2011.
doi:10.1103/PhysRevB.83.235420 Google Scholar
21. Liu, M., D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, "Optical activity and coupling in twisted dimer meta-atoms," Appl. Phys. Lett., Vol. 100, 111114, 2012.
doi:10.1063/1.3694269 Google Scholar
22. Li, Z., M. Mutlu, and E. Ozbay, "Chiral metamaterials: From optical activity and negative refractive index to asymmetric transmission," J. Opt., Vol. 15, 023001, 2013.
doi:10.1088/2040-8978/15/2/023001 Google Scholar
23. Li, M., L. Guo, and H. Yang, "Experimental and simulated study of dual-band chiral metamaterials with strong optical activity," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2381-2385, 2014.
doi:10.1002/mop.28597 Google Scholar
24. Hannam, K., D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, "Broadband chiral metamaterials with large optical activity," Phys. Rev. B, Vol. 89, 125105, 2014.
doi:10.1103/PhysRevB.89.125105 Google Scholar
25. Zhao, Y., A. Belkin, and A. Alu, "Twisted optical metamaterials for planarized ultrathin broadband circular polarizers," Nat. Commun., Vol. 3, 870, 2012.
doi:10.1038/ncomms1877 Google Scholar
26. Chen, J. and A. Zhang, "A novel design of circularly polarized antenna based on metamaterial," International Journal of Electronics, Vol. 100, No. 6, 770-778, 2013.
doi:10.1080/00207217.2012.720952 Google Scholar
27. Hong, Q., T. Wu, X. Zhu, R. Lu, and S. T. Wu, "Designs of wide-view and broadband circular polarizers," Opt. Express, Vol. 13, No. 20, 8318-8331, 2005.
doi:10.1364/OPEX.13.008318 Google Scholar
28. Ge, Z., M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, "Wide-view and broadband circular polarizers for transflective liquid crystal displays," J. Display Technol., Vol. 4, No. 2, 129-138, 2008.
doi:10.1109/JDT.2008.920178 Google Scholar
29. Gansel, J., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M.Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
doi:10.1126/science.1177031 Google Scholar
30. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators," Opt. Lett., Vol. 36, No. 9, 1653-1655, 2011.
doi:10.1364/OL.36.001653 Google Scholar
31. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.
doi:10.1364/OE.20.016050 Google Scholar
32. Xie, L., H.-L. Yang, X. Huang, and Z. Li, "Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index," Progress In Electromagnetics Research, Vol. 141, 645-657, 2013.
doi:10.2528/PIER13063003 Google Scholar
33. Yana, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.
doi:10.1063/1.4794940 Google Scholar
34. Xu, H. X., G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, "Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial," Opt. Express, Vol. 210, No. 21, 24912-24921, 2013.
doi:10.1364/OE.21.024912 Google Scholar
35. Ye, Y., X. Li, F. Zhuang, and S. W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, 031111, 2011.
doi:10.1063/1.3615054 Google Scholar
36. Cheng, Y., Y. Nie, Z. Cheng, and R. Z. Gong, "Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial," Progress In Electromagnetics Research, Vol. 145, 263-272, 2014.
doi:10.2528/PIER14020501 Google Scholar
37. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Trans. Antenn. Propag., Vol. 58, No. 7, 2457-2458, 2010.
doi:10.1109/TAP.2010.2048874 Google Scholar
38. Wu, S., X. Huang, B. Xiao, Y. Jin, and H. Yang, "Multi-band circular polarizer based on twisted triple split-ring resonator," Chin. Phys. B, Vol. 23, No. 12, 127805, 2014.
doi:10.1088/1674-1056/23/12/127805 Google Scholar
39. Li, Y., J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, "Achieving wide- band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces," Journal of Applied Physics, Vol. 117, No. 4, 044501, 2015.
doi:10.1063/1.4906220 Google Scholar
40. Hodgkinson, I. J., A. Lakhtakia, Q. H. Wu, S. L. De, and M. W. McCall, "Ambichiral, equichiral and finely chiral layered structures," Opt. Commun., Vol. 239, 353, 2004.
doi:10.1016/j.optcom.2004.06.005 Google Scholar
41. Cheng, Y. Z., Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, "Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 14, 1850-1858, 2013.
doi:10.1080/09205071.2013.825891 Google Scholar
42. Cheng, Y. Z., R. Z. Gong, Z. Z. Cheng, and Y. Nie, "Perfect dual-band circular polarizer based on twisted split-ring structure asymmetric chiral metamaterial," Applied Optics, Vol. 53, No. 25, 5763-5768, 2014.
doi:10.1364/AO.53.005763 Google Scholar
43. Cheng, Y. Z., R. Z. Gong, and Z. Z. Cheng, "A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves," Optics Commun., Vol. 361, 41-46, 2016.
doi:10.1016/j.optcom.2015.10.031 Google Scholar